ADMINISTRIVIA

- Assignment 2 out!
- Course Project
 - Project list by Oct 4
 - Form groups and submit project bids by Oct 11
 - Assigned project by Oct 15
 - Introductions due Oct 25
SETTING: FAIR SHARING

Equal Share

- 100% of allocation
- 33% of allocation
- 33% of allocation
- 33% of allocation

Max-Min Share

- Maximize the allocation for most poorly treated users

- Maximize the minimum

- 100% of allocation
- 20% of allocation
- 40% of allocation
- 40% of allocation
SLOT-BASED MODEL

Slot: Fixed quantity of CPU and memory

Example: Hadoop MapReduce
 Mapper: 2 CPU and 1 GB
 Reducer: 1 CPU and 2 GB

Allocate in units of slots
MOTIVATION: MULTI RESOURCES
DRF: MODEL

Users have a demand vector
<2, 3, 1> means user’s task needs 2 R1, 3 R2, 1 R3

Resources given in multiples of demand vector
i.e., users might get <4, 6, 2>
PROPERTIES

Sharing Incentive

Pareto Efficiency

Strategy Proof

Envy free
PROPERTIES

Sharing Incentive
User is no worse off than a cluster with 1/n resources

Strategy Proof
User should not benefit by lying about demands

Pareto Efficiency
Not possible to increase one user without decreasing another

Envy free
User should not desire the allocation of another user
DRF: APPROACH

<table>
<thead>
<tr>
<th>Dominant Resource</th>
<th>Dominant Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource user has the biggest share of</td>
<td>Fraction of the dominant resource user is allocated</td>
</tr>
<tr>
<td>Total: <10 CPU, 4 GB></td>
<td>E.g., for User 1 this is 25% or 1/4</td>
</tr>
<tr>
<td>User 1: <1 CPU, 1 GB></td>
<td></td>
</tr>
<tr>
<td>Dominant resource is memory</td>
<td></td>
</tr>
</tbody>
</table>
DRF: APPROACH

Equalize the dominant share of users

<table>
<thead>
<tr>
<th>User</th>
<th>Allocation</th>
<th>Dominant Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>User1</td>
<td><0 CPU, 0 GB></td>
<td>0</td>
</tr>
<tr>
<td>User2</td>
<td><0 CPU, 0 GB></td>
<td>0</td>
</tr>
</tbody>
</table>

Total: <9 CPU, 18 GB>
User1: <1 CPU, 4 GB>
 dom res: **mem**
User2: <3 CPU, 1 GB>
 dom res: **CPU**
DRF: APPROACH

Total: <9 CPU, 18 GB>

User1: <1 CPU, 4 GB> per task
 <3 CPU, 12 GB> for 3 tasks
 dom res: mem
 dom share: 12/18 = 2/3

User2: <3 CPU, 1 GB>
 <6 CPU, 2 GB> for 2 tasks
 dom res: CPU
 dom share: 6/9 = 2/3
Whenever there are available resources:
Schedule a task to the user with *smallest dominant share*
Algorithm 1 DRF pseudo-code

\[
\begin{align*}
R &= \langle r_1, \ldots, r_m \rangle \quad \triangleright \text{total resource capacities} \\
C &= \langle c_1, \ldots, c_m \rangle \quad \triangleright \text{consumed resources, initially 0} \\
s_i \ (i = 1..n) &= \quad \triangleright \text{user } i\text{'s dominant shares, initially 0} \\
U_i &= \langle u_{i,1}, \ldots, u_{i,m} \rangle \ (i = 1..n) \quad \triangleright \text{resources given to user } i, \text{initially 0} \\
\end{align*}
\]

pick user \(i\) with lowest dominant share \(s_i\)

\(D_i \leftarrow \text{demand of user } i\text{'s next task}\)

if \(C + D_i \leq R\) then

\[
\begin{align*}
C &= C + D_i \quad \triangleright \text{update consumed vector} \\
U_i &= U_i + D_i \quad \triangleright \text{update } i\text{'s allocation vector} \\
s_i &= \max_{j=1}^{m} \{u_{i,j}/r_j\}
\end{align*}
\]

else

return \(\triangleright \text{the cluster is full}\)

end if
COMPARISON: ASSET FAIRNESS

Asset Fairness: Equalize each user’s sum of resource shares

Consider total of 70 CPUs, 70 GB RAM
U1 needs <2 CPU, 2 GB RAM> per task
U2 needs <1 CPU, 2 GB RAM> per task

Asset Fair Allocation:
U1: 15 tasks: 30 CPU, 30 GB (Sum = 60)
U2: 20 tasks: 20 CPU, 40 GB (Sum = 60)
COMPARISON: ASSET FAIRNESS

Asset Fairness: Equalize each user’s sum of resource shares

Violates Sharing Incentive

Consider total of 70 CPUs, 70 GB RAM
U1 needs <2 CPU, 2 GB RAM> per task
U2 needs <1 CPU, 2 GB RAM> per task

Sharing incentive?
Half of the cluster is 35 CPU, 35 GB RAM
U1:
U2:
COMPARISON: CEEI

CEEI: Competitive Equilibrium from Equal Incomes

- Each user receives initially $1/n$ of every resource,
- Subsequently, each user can trade resources with other users in a perfectly competitive market
- Nash solution: Maximize product of utilities across users
COMPARISON: CEEI

Total: <9 CPU, 18 GB> User1: <1 CPU, 4 GB> User2: <3 CPU, 1 GB>

\[
\max (x \cdot y) \quad \text{subject to} \quad x + 3y \leq 9, \quad 4x + y \leq 18
\]
CEEI: STRATEGY PROOFNESS

Total: <9 CPU, 18 GB>

User2 Before:
CEEI: 55% CPU, 9% mem

Total: <9 CPU, 18 GB>
User1: <1 CPU, 4 GB>
User2: <3 CPU, 1 GB>
User2: <3 CPU, 2 GB>
COMPARISON

<table>
<thead>
<tr>
<th>Property</th>
<th>Allocation Policy</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Asset</td>
<td>CEEI</td>
<td>DRF</td>
</tr>
<tr>
<td>Sharing Incentive</td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Strategy-proofness</td>
<td>✔</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>Envy-freeness</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Pareto efficiency</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Single Resource Fairness</td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Bottleneck Fairness</td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Population Monotonicity</td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Resource Monotonicity</td>
<td></td>
<td></td>
<td>✔</td>
</tr>
</tbody>
</table>

Table 2: Properties of Asset Fairness, CEEI and DRF.
DRF: Dominant Resource Fairness
Allocation policy for scheduling
Provides multi-resource fairness
Ensures sharing incentive, strategy proofness
DISCUSSION

https://forms.gle/n97b12Qcs8Xv3C6L6
What could be one workload / cluster scenario where DRF implemented on Mesos will NOT be optimal?
NEXT STEPS

Next Week: Machine Learning
Assignment 2 out!