
CS 744: GOOGLE FILE SYSTEM

Shivaram Venkataraman
Fall 2022

Hello

ANNOUNCEMENTS

- Assignment 1 out later today
- Group submission form
- Anybody on the waitlist?

→ 5pm today

OUTLINE

1. Brief history
2. GFS
3. Discussion
4. What happened next?

HISTORY OF DISTRIBUTED FILE SYSTEMS

SUN NFS

File
Server

Client

Client

Client

Client

RPC

RPC

RPC

RPC
Local FS

transparent mid 1980s

☒ read [
"

a. csr

"

,
0,1024)

NFS

↑

←

lots of
storage

/dev/sda1 on /
/dev/sdb1 on /backups

NFS on /home

/

backups home

bak1 bak2 bak3

etc bin

tyler

537

p1 p2

.bashrc

CACHING

Client cache records time when data block was fetched (t1)
Before using data block, client does a STAT request to server

- get’s last modified timestamp for this file (t2) (not block…)
- compare to cache timestamp
- refetch data block if changed since timestamp (t2 > t1)

Local FS

Server Client 2

NFS
cache: A t1t2

baching
was

popular to

improve perf

-

Caching protocols

were
non

-

trivial
.

ANDREW FILE SYSTEM

- Design for scale

- Whole-file caching

- Callbacks from server

→ AFS

larger
number

- of clients

↳ client opens
a file

WORKLOAD PATTERNS (1991)

☒

-1
read

< &K
in

A-Ze

OceanSTORE/PAST

Wide area storage systems

Fully decentralized

Built on distributed hash
tables (DHT)

- late 90s

BitTorrent early 2000s

GFS: WHY ?

"

Large
"

sequential reads 1
Fault tolerance

writes

→ Hardware
very few

random reads

characteristics
, no

random writes

1.

Applications could

work without

Single master
Posix !

Centralization
- single enterprise
owns the distributed system

GFS: WHY ?

Components with failures Files are huge !

Applications are different

GFS: WORKLOAD ASSUMPTIONS

“Modest” number of large files

Two kinds of reads: Large Streaming and small random

Writes: Many large, sequential writes. Few random

High bandwidth more important than low latency[]

GFS: DESIGN

- Single Master for
metadata

- Chunkservers for
storing data

- No POSIX API !
- No Caches!

gunk mappingread [a-Csv! 0
, 1024)

→ ID

-

-

↳ server?

Serve:3

chunk1 dvhkz . . .

Every file
divided into chunks

CHUNK SIZE TRADE-OFFS

Client à Master

Client à Chunkserver

Metadata

- too small chunk size

too many
Rpcs to

master

- too much metadata * if chunks

are too small !

Having too large a chunks've

↳ overload a chunk server

(fault recovery
times)

GFS: REPLICATION

- 3-way replication to handle faults
- Primary replica for each chunk
- Chain replication (consistency)

- Decouple data, control flow
- Dataflow: Pipelining, network-

aware

•

small requests
- Bytes or

KB

(-
configurable

\
- 64 MB of data

to chunkserver

RECORD APPENDS
Write Client specifies the offset
Record Append GFS chooses offset

Consistency
At-least once
Atomic

Web servers

produce logs
→ Queries

made to search

-
→ Entry

[
"

0744

"

,

"

Madison
"

,

"

ok"]

→ Slightly weaker guarantees
→ It might appear

more than once,
but

it will appear
at least once

↳ entire record will appear together

MASTER OPERATIONS

- No “directory” inode! Simplifies locking
- Replica placement considerations

- Implementing deletes

No symlink

→ failure risk .
one replica

outside this rack

→ load , disk utilization

→ hazily .

Metadata makes a note that file
is

deleted

FAULT TOLERANCE

- Chunk replication with 3 replicas
- Master

- Replication of log, checkpoint
- Shadow master

- Data integrity using checksum blocks

ais Master

F¥' "

file a-esv was
→

- -

↓ created
"

save data

structure
→truncatelog

-

chunkiervet encodedchecksums v32 KB 164 KB

DISCUSSION

https://forms.gle/DntYB3yTL9eQZFzKA

What happens with a faster network (125MB/s) but same disks (100 MB/s)?

µmB↳+"mmb 4
dish at

bwktheh.mey~ioo-tZMBb.tosame
- - -

- n

µ!%rÑ
"

→
+soil
"

*

N r r

-

9] 0

- large
reads" "

"

÷.→ :#• µ:÷mhigh
non op

but large
reads

WHAT HAPPENED NEXT

Keynote at PDSW-DISCS 2017: 2nd Joint International Workshop On Parallel Data Storage &
Data Intensive Scalable Computing Systems

GFS EVOLUTION
Motivation:

- GFS Master
One machine not large enough for large FS
Single bottleneck for metadata operations (data path offloaded)
Fault tolerant, but not HA

- Lack of predictable performance
No guarantees of latency
(GFS problems: one slow chunkserver -> slow writes)

GFS EVOLUTION

GFS master replaced by Colossus
Metadata stored in BigTable

Recursive structure ? If Metadata is ~1/10000 the size of data
100 PB data → 10 TB metadata
10TB metadata → 1GB metametadata
1GB metametadata → 100KB meta...

GFS EVOLUTION

Need for Efficient Storage

Rebalance old, cold data

Distributes newly written data evenly
across disk

Manage both SSD and hard disks

NEW STORAGE SYSTEMS

Owl: Scale and Flexibility in Distribution of Hot Content
OSDI 2022

Later in the course!

NEXT STEPS

- Assignment 1 out tonight!
- Next up: MapReduce, Spark

