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ANNOUNCEMENTS

- Assignment 1 out later today
- Group submission form
- Anybody on the waitlist?

→ 5pm today



OUTLINE

1. Brief history
2. GFS
3. Discussion
4. What happened next?



HISTORY OF DISTRIBUTED FILE SYSTEMS
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CACHING

Client cache records time when data block was fetched (t1)
Before using data block, client does a STAT request to server

- get’s last modified timestamp for this file (t2) (not block…)
- compare to cache timestamp
- refetch data block if changed since timestamp (t2 > t1)

Local FS

Server Client 2

NFS
cache: A t1t2

baching
was

popular to

improve perf

-

Caching protocols

were
non
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trivial
.



ANDREW FILE SYSTEM

- Design for scale

- Whole-file caching

- Callbacks from server

→ AFS

larger
number

- of clients

↳ client opens
a file



WORKLOAD PATTERNS (1991)
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OceanSTORE/PAST

Wide area storage systems

Fully decentralized

Built on distributed hash 
tables (DHT)

- late 90s

BitTorrent early 2000s



GFS: WHY ?

"

Large
"

sequential reads 1
Fault tolerance

writes

→ Hardware
very few

random reads

characteristics
, no

random writes

1.

Applications could

work without

Single master
Posix !

Centralization
- single enterprise
owns the distributed system



GFS: WHY ?

Components with failures Files are huge !

Applications are different 



GFS: WORKLOAD ASSUMPTIONS

“Modest” number of large files

Two kinds of reads: Large Streaming and small random

Writes: Many large, sequential writes. Few random

High bandwidth more important than low latency[ ]



GFS: DESIGN

- Single Master for 
metadata

- Chunkservers for 
storing data

- No POSIX API !       
- No Caches!

gunk mappingread [a-Csv! 0
, 1024)

→ ID

-
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↳ server?

Serve:3

chunk1 dvhkz . . .

Every file
divided into chunks



CHUNK SIZE TRADE-OFFS

Client à Master

Client à Chunkserver

Metadata

- too small chunk size

too many
Rpcs to

master

- too much metadata * if chunks

are too small !

Having too large a chunks've

↳ overload a chunk server

(fault recovery
times)



GFS: REPLICATION

- 3-way replication to handle faults
- Primary replica for each chunk
- Chain replication (consistency)

- Decouple data, control flow
- Dataflow: Pipelining, network-

aware

•

small requests
- Bytes or

KB

( -
configurable

\
- 64 MB of data

to chunkserver



RECORD APPENDS
Write Client specifies the offset
Record Append GFS chooses offset

Consistency
At-least once
Atomic

Web servers

produce logs
→ Queries

made to search

-
→ Entry
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,
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→ Slightly weaker guarantees
→ It might appear

more than once,
but

it will appear
at least once

↳ entire record will appear together



MASTER OPERATIONS

- No “directory” inode! Simplifies locking
- Replica placement considerations

- Implementing deletes 

No symlink

→ failure risk .
one replica

outside this rack

→ load , disk utilization

→ hazily .

Metadata makes a note that file
is

deleted



FAULT TOLERANCE

- Chunk replication with 3 replicas
- Master

- Replication of log, checkpoint
- Shadow master

- Data integrity using checksum blocks

ais Master
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chunkiervet encodedchecksums v32 KB 164 KB



DISCUSSION

https://forms.gle/DntYB3yTL9eQZFzKA



What happens with a faster network (125MB/s) but same disks (100 MB/s)?
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WHAT HAPPENED NEXT



Keynote at PDSW-DISCS 2017: 2nd Joint International Workshop On Parallel Data Storage & 
Data Intensive Scalable Computing Systems



GFS EVOLUTION
Motivation:

- GFS Master
One machine not large enough for large FS
Single bottleneck for metadata operations (data path offloaded)
Fault tolerant, but not HA

- Lack of predictable performance
No guarantees of latency
(GFS problems: one slow chunkserver -> slow writes)



GFS EVOLUTION

GFS master replaced by Colossus
Metadata stored in BigTable

Recursive structure ?  If Metadata is ~1/10000 the size of data
100 PB data → 10 TB metadata
10TB metadata → 1GB metametadata
1GB metametadata → 100KB meta... 



GFS EVOLUTION

Need for Efficient Storage

Rebalance old, cold data

Distributes newly written data evenly 
across disk

Manage both SSD and hard disks



NEW STORAGE SYSTEMS

Owl: Scale and Flexibility in Distribution of Hot Content
OSDI 2022

Later in the course!



NEXT STEPS

- Assignment 1 out tonight!
- Next up: MapReduce, Spark


