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ANNOUNCEMENTS

• Assignment 1 deliverables
– Code (comments, formatting)
– Report

• Partitioning analysis (graphs, tables, figures etc.)
• Persistence analysis (graphs, tables, figures etc.)
• Fault-tolerance analysis (graphs, tables, figures etc.)

• CloudLab Permissions Issues? → Around 5pm



REVIEW GROUPS

Goal: Review papers together, learn from other students in class
- Canvas groups randomized 
- Will change groups mid-semester

Action: Discuss paper with group members (in-person or Zoom)
Fill out paper reviews as before (Google Form links)
Extra questions about what you discussed as a group!

Questions? Comments? 



Scalable Storage Systems

Datacenter Architecture

Resource Management

Computational Engines

Machine Learning SQL Streaming Graph

Applications

→ MapReduce

→ GFS

? ?



BACKGROUND: PTHREADS
void *myThreadFun(void *vargp) 
{ 

sleep(1); 
printf(“Hello World\n"); 
return NULL; 

}

int main() 
{ 

pthread_t thread_id_1, thread_id_2; 
pthread_create(&thread_id_1, NULL, myThreadFun, NULL); 
pthread_create(&thread_id_2, NULL, myThreadFun, NULL); 
pthread_join(thread_id_1, NULL); 
pthread_join(thread_id_2, NULL); 
exit(0); 

}
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BACKGROUND: MPI
int main(int argc, char** argv) {

MPI_Init(NULL, NULL);

// Get the number of processes
int world_size;
MPI_Comm_size(MPI_COMM_WORLD, &world_size);

// Get the rank of the process
int world_rank;
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

// Print off a hello world message
printf("Hello world from rank %d out of %d processors\n",

world_rank, world_size);

// Finalize the MPI environment.
MPI_Finalize();

}

mpirun -n 4 -f host_file ./mpi_hello_world
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MOTIVATION

Build Google Web Search
- Crawl documents, build inverted indexes etc.

Need for 
- automatic parallelization
- network, disk optimization
- handling of machine failures

→
how many processes are run

→
where these processes are

run

↳ because failures
are

common



OUTLINE

- Programming Model
- Execution Overview
- Fault Tolerance
- Optimizations



PROGRAMMING MODEL

Data type: Each record is (key, value)

Map function:
(Kin, Vin) à list(Kinter, Vinter)

Reduce function:
(Kinter, list(Vinter)) à list(Kout, Vout)

DoeID contents
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Example: Word Count

def mapper(line):
for word in line.split():

output(word, 1)

def reducer(key, values):
output(key, sum(values))
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Word Count Execution: PART 1
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Word Count Execution: PART2
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ASSUMPTIONS
1. Inputs files are sptiltahle

↳ can parallelize computation on diff Melik

2. Local storage
is available and is fast / cheap

↳ Intermediate data

3 ' Global Fs Cafs ) that store inputs and outputs

reliably .



ASSUMPTIONS

1. Commodity networking, less bisection bandwidth
2. Failures are common
3. Local storage is cheap
4. Replicated FS
5. Input is splittable



Word Count Execution
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Fault Recovery
If a task crashes:

– Retry on another node
– If the same task repeatedly fails, end the job

the quick
brown fox
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Fault Recovery

If a node crashes:
– Relaunch its current tasks on other nodes

What about task inputs ? File system replication
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the quick
brown fox

Map

Fault Recovery

If a task is going slowly (straggler):
– Launch second copy of task on another node
– Take the output of whichever finishes first
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MORE DESIGN

Master failure

Locality

↳ one master
,

one machine

lower probability
→ restart the whole job if client

desires !

↳ placement



MAPREDUCE: SUMMARY

- Simplify programming on large clusters with frequent failures

- Limited but general functional API
- Map, Reduce, Sort
- No other synchronization / communication

- Fault recovery, straggler mitigation through retries

-

-
-

-



DISCUSSION
https://forms.gle/KTcqK8QRUJ91ToPM8



DISCUSSION

Indexing pipeline where you start with HTML documents. You want to index the 
documents after removing the most commonly occurring words. 
1. Compute most common words.
2. Remove them and build the index. 
What are the main shortcomings of using MapReduce to do this?
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Jeff Dean, LADIS 2009



NEXT STEPS

• Next lecture: Spark
• Assignment 1: Use Piazza!


