
CS 744: MAPREDUCE

Shivaram Venkataraman
Fall 2022

ANNOUNCEMENTS

• Assignment 1 deliverables
– Code (comments, formatting)
– Report

• Partitioning analysis (graphs, tables, figures etc.)
• Persistence analysis (graphs, tables, figures etc.)
• Fault-tolerance analysis (graphs, tables, figures etc.)

• CloudLab Permissions Issues? → Around 5pm

REVIEW GROUPS

Goal: Review papers together, learn from other students in class
- Canvas groups randomized
- Will change groups mid-semester

Action: Discuss paper with group members (in-person or Zoom)
Fill out paper reviews as before (Google Form links)
Extra questions about what you discussed as a group!

Questions? Comments?

Scalable Storage Systems

Datacenter Architecture

Resource Management

Computational Engines

Machine Learning SQL Streaming Graph

Applications

→ MapReduce

→ GFS

? ?

BACKGROUND: PTHREADS
void *myThreadFun(void *vargp)
{

sleep(1);
printf(“Hello World\n");
return NULL;

}

int main()
{

pthread_t thread_id_1, thread_id_2;
pthread_create(&thread_id_1, NULL, myThreadFun, NULL);
pthread_create(&thread_id_2, NULL, myThreadFun, NULL);
pthread_join(thread_id_1, NULL);
pthread_join(thread_id_2, NULL);
exit(0);

}

→ Scale your
confutation

cores

→ shared memory

→
hocks

,

Cvs .
Semaphores

→ Communicate

between
threads

BACKGROUND: MPI
int main(int argc, char** argv) {

MPI_Init(NULL, NULL);

// Get the number of processes
int world_size;
MPI_Comm_size(MPI_COMM_WORLD, &world_size);

// Get the rank of the process
int world_rank;
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

// Print off a hello world message
printf("Hello world from rank %d out of %d processors\n",

world_rank, world_size);

// Finalize the MPI environment.
MPI_Finalize();

}

mpirun -n 4 -f host_file ./mpi_hello_world

Multi Processes

☐

rank °
Handy

☐ ☐ . .
.

.

2 3

MPI
_

Send

MPI - Rew . .
. .

MOTIVATION

Build Google Web Search
- Crawl documents, build inverted indexes etc.

Need for
- automatic parallelization
- network, disk optimization
- handling of machine failures

→
how many processes are run

→
where these processes are

run

↳ because failures
are

common

OUTLINE

- Programming Model
- Execution Overview
- Fault Tolerance
- Optimizations

PROGRAMMING MODEL

Data type: Each record is (key, value)

Map function:
(Kin, Vin) à list(Kinter, Vinter)

Reduce function:
(Kinter, list(Vinter)) à list(Kout, Vout)

DoeID contents

-

→

recall records

a. sutured
.

string , integers

↓
of
the values

corresponding to this key

Example: Word Count

def mapper(line):
for word in line.split():

output(word, 1)

def reducer(key, values):
output(key, sum(values))

Wikipedia

wi

winter

is ,

2

>
:
-

.

Word Count Execution: PART 1

the quick
brown fox

the fox ate
the mouse

how now
brown
cow

Map

Map

Map

Reduce

Reduce

Input Map Shuffle & Sort Reduce Output

GFS
chunks

1. -
3 Processes

intermediate
data

the , 1)

⇐+i.?

Word Count Execution: PART2

the quick
brown fox

the fox ate
the mouse

how now
brown
cow

Map

Map

Map

Reduce

Reduce

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1

mouse, 1
quick, 1

the, 1
brown, 1

fox, 1

quick, 1

the, 1
fox, 1
the, 1

how, 1
now, 1

brown, 1

ate, 1
mouse, 1

cow, 1

Input Map Shuffle & Sort Reduce Output
records are

sort by

intermediate key
-

chunk
- grouping ~ᵈ"ᵗ"ʳʰgrecords ↳ sort

with same

key

ASSUMPTIONS
1. Inputs files are sptiltahle

↳ can parallelize computation on diff Melik

2. Local storage
is available and is fast / cheap

↳ Intermediate data

3 ' Global Fs Cafs) that store inputs and outputs

reliably .

ASSUMPTIONS

1. Commodity networking, less bisection bandwidth
2. Failures are common
3. Local storage is cheap
4. Replicated FS
5. Input is splittable

Word Count Execution

the quick
brown fox

Map Map

the fox ate
the mouse

Map

how now
brown
cow

Automatically
split work

Schedule tasks
with locality

MR Master
Submit a Job

C++
, MapReduce API

input filey Gfs Master
locations

,

,

,

_

^

-

-

- -
-

-

-

.

_
.

-

-

- We" i

G
prop
taskswfmÉ¥÷¥

Fault Recovery
If a task crashes:

– Retry on another node
– If the same task repeatedly fails, end the job

the quick
brown fox

Map Map

the fox ate
the mouse

Map

how now
brown
cow

→

to guard user
code

errors

→
assuming
idempotency !

Fault Recovery

If a node crashes:
– Relaunch its current tasks on other nodes

What about task inputs ? File system replication

the quick
brown fox

Map Map

the fox ate
the mouse

Map

how now
brown
cow

Gfs chunks ewers

Tasks

f
_☒hmhs chinks

the quick
brown fox

Map

Fault Recovery

If a task is going slowly (straggler):
– Launch second copy of task on another node
– Take the output of whichever finishes first

the quick
brown fox

Map

the fox ate
the mouse

Map

how now
brown
cow

f-
some tasks make slow progress

→ idempotenay

5min

for
SMB

1 min

BAYLY!
for SMB

MORE DESIGN

Master failure

Locality

↳ one master
,

one machine

lower probability
→ restart the whole job if client

desires !

↳ placement

MAPREDUCE: SUMMARY

- Simplify programming on large clusters with frequent failures

- Limited but general functional API
- Map, Reduce, Sort
- No other synchronization / communication

- Fault recovery, straggler mitigation through retries

-

-
-

-

DISCUSSION
https://forms.gle/KTcqK8QRUJ91ToPM8

DISCUSSION

Indexing pipeline where you start with HTML documents. You want to index the
documents after removing the most commonly occurring words.
1. Compute most common words.
2. Remove them and build the index.
What are the main shortcomings of using MapReduce to do this?

µ
need to submit

]
discussionforml.ttNormal execution is

-

faster

whhhafs
are

!
ᵗᵈᵈʰ

running! Doesn't depend on

backup tasks

0 0
1100s

850

Jeff Dean, LADIS 2009

NEXT STEPS

• Next lecture: Spark
• Assignment 1: Use Piazza!

