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ADMINISTRIVIA

- Midterm grades out!
- Regrade requests: In-person (strongly preferred)

- Thu: After class, Roger’s OH
- Mon: Shivaram’s OH, Roger’s OH
- Tue: After class

- Course Project: Check in by Nov 23th

-> 3pm today?

I Piazza today



PROJECT CHECK-INS

One page document that includes the following

- What have you done so far
- Any challenges that you have faced so far
- Your timeline (from now till end of the semester)
- Things you need help from the course staff
- Any other comments/remarks
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Are
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need

you



Scalable Storage Systems

Datacenter Architecture

Resource Management

Computational Engines

Machine Learning SQL Streaming Graph

Applications

&
serving weeks

-> Analytics Powergraph
↳

learning



EXAMPLE: LINK PREDICTION

Task: Predict potential connections in a social network
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[0.25, 0.45, 0.30]

[0.15, 0.85, 0.92]

…
Find K-
nearest 

neighbors

image,
label
I

friend reccomendation
vector representation
isPredicted

- typed edge
=embedding

d= 3 /d:50 or 100

↓
learn embeddings↳

Machine learning? "Capture "graph structure"



BACKGROUND: GRAPH EMBEDDING MODELS

Score function
Capture structure of the graph given source, destination embedding

Loss function
Maximize score for edges in graph
Minimize for others (negative edges)
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NEGATIVE SAMPLING

Sample from edges not in the graph!

Two options
1. According to data distribution

2. Uniformly

two vertices
are

If

-

a positive edges

I
-coatedsings tobe

Distance< ↓e'not
in

Distance -ensiderelarity
function · T I

&

in graph



TRAINING ALGORITHM

SGD/AdaGrad optimizer

Sample positive, negative edges

Access source, dest embeddings for 
each edge in batch
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for i in range(num_batches)
B = getBatchEdges(i)
E = getEmbeddingParams(B)
G = computeGrad(E, B)
updateEmbeddingParams(G)

Model = nxd matrix

-> Sparse updates to
in

the model I epoch training:
all the edges
the graph

batch-

&

S-
lots of

·mifh ~ gradient
accesses ratyae

ntiaiab

random
>S

the model



CHALLENGE: LARGE GRAPHS

Large graphs à Large model sizes 

Example
3 Billion vertices, d = 400 
Model size = 3 billion * 400 * 4 = 4.8 TB!

Need to scale beyond GPU memory, CPU memory!
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-
I

wish thin
Reset a 50-100 MB

BERT wS00 -19B



CHALLENGE: DATA MOVEMENT

DGL-KE: Sample edges, embeddings from 
CPU memory

Pytorch-BigGraph: Partition embeddings so 
that one partition fits on GPU memory.  
Load sequentially

9One epoch on the Freebase86m knowledge graph 

-> random access, Pale

10%
⑧

termen wartimzriimoteaO



MARIUS

I/O efficient system for learning graph embeddings

Marius Design
- Pipelined training
- Partition ordering
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PIPELINED TRAINING
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5 stage pipeline transferred
while be isbeing loaded
by is

- P
worker by bef

- - b. If #

b23
=> ↑
-

El ~
I

-

Pipeline is as fast as slowest stage If bo has any embeddings is in

- Quenes provide back pressure I common with bus then load

will be stale!

-> Bounded staleness, sparse updates



OUT of MEMORY training
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Key idea: Maintain a cache of partitions in 
CPU memory

Questions
Order of partition traversal? 
How to perform eviction?

oo, or cpu memory
calle

eviction) [

---

--
Embedding table



BETA ORDERING
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Initialize cache with c partitions

Swap in partition that leads to 
highest number of unseen pairs

Achieved by fixing c-1 partitions 
and swap remaining in any order

Goal: Min number of

↓
adjacency

matrix

.

all buckets
disk swaps

for I epoch

I ↳ ↑ Intuition
#E

1 2 3

1 2 Y

1 2

Eff
3
[ 3

===
S

eache

contents -It
every swap

↳ very fast
to get

- keep afixed and

embeddings for through rest

edges with eveldest I#edecache and repeat Iin 20, 1 z}



SUMMARY

Graph Embeddings: Learn embeddings from graph data for ML

Marius: Efficient single-machine training
Pipelining to use CPU, GPU 
Partition buffer, BETA ordering



DISCUSSION
https://forms.gle/uNAKsPsZp56Cc1Vz9



How does the partitioning scheme used in this paper differ from partitioning schemes 
used in PowerGraph and why?

-> batch of edges - get
scoldest embedding

Marius ↳ spanse
access

-

Powergraph -> PageRank ->
ubo vertices

remote reads
->
minimize number of↳ I nbus

into see
access

Multiple machines

1- GPU

t

disk



better cost/perf
and also expensive

with scale up s

poohigh utilization-
->lowest

foreit

multiple ⑧
not the fastest

* O
CPU

machines
O

network

to fit
use 8GOVe - move memory compute

If you embeddings,
move

speedup



What are some shortcomings of Marius? What could the authors do to 
further improve the system?
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BESordering take into account differences

load- aware scheduling

Latency is higher with pipelining?
↳



NEXT STEPS

Next class: Distributed GNNs
Project check-ins by Nov 23th


