
CS 744: MESOS

Shivaram Venkataraman
Fall 2022

ADMINISTRIVIA

- Assignment 1: Due Sep 28th at 11am!
- Assignment 2 out soon!
- Project details

- Create project groups
- Bid for projects/Propose your own
- Work on Introduction
- Final report / poster presentation

→

[]
[

Scalable Storage Systems

Datacenter Architecture

Resource Management

Computational Engines

Machine Learning SQL Streaming Graph

Applications

< Spark
,

MapReduce
mechanism _ . - .

I
5

→ Design

1
policy

MapReduce

GFS

Spark

BACKGROUND: OS SCHEDULING

code, static data
heap

stack

code, static data
heap

stack

code, static data
heap

stack

CPU

How do we
share CPU
between

processes ?

Process → P1 (P2) Process → gcc (B) Process → firefox

rim

context
switching
] Time sharing

P1 / P2 (↑3| .

- . ..

pre-empt
snitch to# time
P2

CLUSTER SCHEDULING
① Locality of

space sharing frameworks to
- Partition resources

resources

many applications
run

④ Minimize wasted
at the same time work

,
but

"""

[
%""

[
"
""
" "" ᵗʳʰ

""

get syf.int
resources

③ Applications
are complex
and diverse

TARGET ENVIRONMENT

Multiple MapReduce versions

Mix of frameworks: MPI, Spark, MR

Avoid per-framework clusters. Why?

-
~ 2006 - wog Hadoop releases

share the clusters

--

÷.

/ spark MM Ytʳʰ"→ under utilization
↳ workload time varying

→ Data sharing , composing frameworks

DESIGNTwo
-
level design

why do

framework - lend this ?

schedulers ⊖ -

Extensibility
to handle

centralized diverse

Moros Master@ frameworks

-

Agent→
- processon

that can
every

spawn
tasks

machine
↳

Motel Reduce tasks
-

containers

RESOURCE OFFERSpwggÑ[

[
= Dual allocation?

MPI

resource → Are process
start someoffers =

-

time

r%%eriM¥+11
.

=
free resources
_

resource
→ limits

spark _

Driver c-

CONSTRAINTS

Examples of constraints
Data locality à soft constraint
GPU machines à hard constraint

Constraints in Mesos:
Applications can reject offers
Optimization: Filters

-

only want resources

that have your
data

- -

↳ only
resources

that pass
this

filter are offered .

DESIGN DETAILS

Allocation:
Tasks are short, allocate when they finish
Long tasks? Revocation beyond guaranteed allocation

Isolation
Containers (Docker)

example : if you
allocate

1 Cpu , KB
to

spark form
a
task

-

↳ pre-emption
Policy can say

that

[framework
is exceeding

excess

its guaranteed
allocation

FAULT TOLERANCE
soft - state

can be

"" ""

÷:¥¥⇔"

by talking
b-

Framework
schedulers

tasks and Mlsos

running agents on

fail machines

HANDLING PLACEMENT PREFERENCES

What is the problem?
More frameworks have preferred nodes than available
Who gets the offers?

How do we do allocations?
Lottery scheculing – offers weighted by num allocations

↳ Two -
level sued . vs

centralized shed .

-
weighted offers
based on job size

→ larger jobs
get a fraction

CENTRALIZED vs DISTRIBUTED

Framework complexity

Fragmentation, Starvation

Inter-dependent framework

→
Mens every framework
needs to write their

scheduler

↳ if you
a mix of small

tasks

and very large
tasks

↳ cannot enforce
such constraint

COMPARISON: YARN

Per-job scheduler

AM asks for resource
RM replies

→ Apache

centralized

↓

regfftrev.no application Manager

COMPARISON: BORG

Single centralized scheduler

Requests mem, cpu in cfg
Priority per user / service

Support for quotas / reservations

→ Kubernetes

-

g-
Packingof
applications

SUMMARY

• Mesos: Scheduler to share cluster between Spark, MR, etc.
• Two-level scheduling with app-specific schedulers
• Provides scalable, decentralized scheduling
• Pluggable Policy ? Next class!

DISCUSSION
https://forms.gle/D1sqfzD3GqxQC4Y97<

What are some problems that might arise if you wanted to use Mesos with
frameworks that had very low latency tasks (e.g., for interactive analytics)

- Mews master needs to make offers frequently

- Could lead ᵗ fragmentation / starvation

- Tasks might get slowed down waiting for

offers

cluster
it

.frmew
"" "

is hither d.anti get benefit

fittest
'

a limited
benefits

•
Muns isworbsite

NEXT STEPS

Next class: Scheduling Policy

Further reading
• https://www.umbrant.com/2015/05/27/mesos-omega-borg-a-survey/
• https://queue.acm.org/detail.cfm?id=3173558

