
CS 744: MESOS

Shivaram Venkataraman
Fall 2022



ADMINISTRIVIA

- Assignment 1: Due Sep 28th at 11am!
- Assignment 2 out soon!
- Project details

- Create project groups
- Bid for projects/Propose your own
- Work on Introduction
- Final report / poster presentation
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BACKGROUND: OS SCHEDULING
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CLUSTER SCHEDULING
① Locality of

space sharing frameworks to
- Partition resources

resources

many applications
run

④ Minimize wasted
at the same time work

,
but

"""

[
%""

[
"
""
" "" ᵗʳʰ

""

get syf.int
resources

③ Applications
are complex
and diverse



TARGET ENVIRONMENT

Multiple MapReduce versions

Mix of frameworks: MPI, Spark, MR

Avoid per-framework clusters. Why?

-
~ 2006 - wog Hadoop releases

share the clusters

--

÷.

/ spark MM Ytʳʰ"→ under utilization
↳ workload time varying
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DESIGNTwo
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CONSTRAINTS

Examples of constraints
Data locality à soft constraint
GPU machines à hard constraint

Constraints in Mesos:
Applications can reject offers
Optimization: Filters
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DESIGN DETAILS

Allocation: 
Tasks are short, allocate when they finish
Long tasks? Revocation beyond guaranteed allocation

Isolation
Containers (Docker)

example : if you
allocate

1 Cpu , KB
to

spark form
a
task
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HANDLING PLACEMENT PREFERENCES

What is the problem?
More frameworks have preferred nodes than available
Who gets the offers?

How do we do allocations?
Lottery scheculing – offers weighted by num allocations

↳ Two -
level sued . vs

centralized shed .

-
weighted offers
based on job size

→ larger jobs
get a fraction



CENTRALIZED vs DISTRIBUTED

Framework complexity

Fragmentation, Starvation

Inter-dependent framework

→
Mens every framework
needs to write their

scheduler

↳ if you
a mix of small

tasks

and very large
tasks

↳ cannot enforce
such constraint



COMPARISON: YARN

Per-job scheduler

AM asks for resource
RM replies

→ Apache

centralized

↓

regfftrev.no application Manager



COMPARISON: BORG

Single centralized scheduler

Requests mem, cpu in cfg
Priority per user / service

Support for quotas / reservations

→ Kubernetes

-
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Packingof
applications



SUMMARY

• Mesos: Scheduler to share cluster between Spark, MR, etc.
• Two-level scheduling with app-specific schedulers
• Provides scalable, decentralized scheduling
• Pluggable Policy ? Next class!



DISCUSSION
https://forms.gle/D1sqfzD3GqxQC4Y97<



What are some problems that might arise if you wanted to use Mesos with 
frameworks that had very low latency tasks (e.g., for interactive analytics)

- Mews master needs to make offers frequently

- Could lead ᵗ fragmentation / starvation

- Tasks might get slowed down waiting for

offers
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NEXT STEPS

Next class: Scheduling Policy

Further reading 
• https://www.umbrant.com/2015/05/27/mesos-omega-borg-a-survey/
• https://queue.acm.org/detail.cfm?id=3173558


