CS 744: NEXUS

Shivaram Venkataraman Fall 2022

ADMINISTRIVIA

Course Project Proposals

- Due Oct 26! → Check Canvas
- See Piazza for template

Assignment 1 grades - Tonight / Tomm.

Midterm details -> Prev year Overtions on Piazza

- Oct 27th: Includes papers from Datacenter as a Computer to Nexus
- Open book, open notes
- Held in class time 9.30-10.45am Central Time

1 pm - 2:15 pm

MACHINE LEARNING: INFERENCE

EXAMPLE APPLICATION

Video analysis service

- Thousands of streams, thousands of tenants
- Each stream is processed by a DNN-based "query"
- Latency SLOs (10s to 100s of ms)

lots of data

-> arriving continuously

SLO -> service - level objectives

> Ly Admin (User level decision input to the system.

SCHEDULING GOAL: HIGH GPU UTILIZATION

trade - off Batch lize - how laterry b= 1 > Lower utilization b = 128 -> High utilization b = 128 -> latercy SLO mills

15 to make a batch takes a while

15 to make a batch takes longer

15 inference of large batch takes longer

SCHEDULING BATCHED EXECUTION

BATCH-AWARE SCHEDULING

-> All information from prev Mide Inputs: Request rate, SLO for each model, Profiles at batch size Approach: Allocate "full" GPUs based on load. Handle residuals Model A reg rate = 1100 reg/s) 8 full GPVs duty cycle d₁ Best + put = b = 16, 125 reg/8 Node 1 Find a packing assignment of k residuals

-> k GPVs to start

-> Merge models to minimize num GPVs Node 2 batch b₂ Node 1 Node 2

HANDLING COMPLEX OUERIES

Challenge:

How do we set latency SLOs for complex queries?

SCHEDULING COMPLEX QUERIES

Query Analysis to determine latency SLO splits Inputs: Models with request rate R_i latency SLO L

100 reglo (SSD)
So reglo

minimize
$$\sum_{v} R_v l_v(b_v)/b_v \longrightarrow \text{find batch nives}$$

$$\text{find minimize that minimize that minimize the minimize that minimize the minimize that the mini$$

ADAPTIVE BATCHING

Clipper: Adapt the batch size based on the oldest request in the queue

BATCH-AWARE DISPATCH

Early-dropping scheme

I. Scans queue using sliding

window of batch size

2. Stop at the first request with that can execute *entire window*

OTHER FEATURES

Prefix Batching

GPU Multiplexing

Overlapping CPU and GPU computation

SUMMARY

- ML Inference goals: latency SLO, GPU utilization
- Nexus: Handle multiple tenants, multiple DNNs
- Schedule using squishy bin packing
- Breakdown SLO for complex queries, adaptive batching

DISCUSSION

https://forms.gle/PtEaiF4casfZm2JY6

Consider a scenario where you have a model that takes variable amount of time depending on the input. For example if a frame contains 100 cars it takes 250ms to process but if the frame has 1 car then it finishes in 10ms. What could be one shortcoming in using Nexus to schedule this model?

Lateray profiling can be hard to do - Use worst case (~100 cars) - lead to under utilization - Dynamic fashion -> could pay off if you have patterns Profiles - linear formula? T. number of cars?

- linear formula? T. number of cars?

- Pipeline needs a new model to count cars.

Next class: SQL

Coming soon

Project Introductions

Midterm I