
CS 744: OWL

Shivaram Venkataraman
Fall 2022

Hello!



ADMINISTRIVIA

Project checkin – feedback
GPU availability

Midterm 2: Dec 6th in class

Poster presentation: Dec 13th

Final report: Dec 20th

->cloud lab limited
↳ Roger

reservation

Google Cloud -> Recipes for
Marius

Tools? Ask us!

I



NEW DATA, HARDWARE MODELS



CONTENT DISTRIBUTION

What is content?
Docker containers
AI models
Search indexes

How is this workload different?

- binaries that are used
Cache popular

- -> inference, serving. Content
->inverted index

↑
-Read heavy, very few updates
- skew, not content is launch 100,000

workers ->
alla binary

- Hotspots which lead to slowdown/failures
at same

time



CHALLENGES / GOALS

Goals
Minimize requests to external storage
Latency of content fetch
Availability

Challenges
Load spikes hot content
Different policies for contents
Manageability 

binary

ExternalYTstorage
- eachhit

-

-> minimize rate Fo
-> minimize failed where isirequests

this Cache?
..

->
spike in time at at
->configurable/flexible

-> Debugging, Updating



PRIOR SOLUTIONS

Hierarchical caching

- Need a lot of resources
- Quotas,Traffic bursts

BitTorrent

- Scalable, decentralized
- Stale peer data,
- Lack of global picture

centralized solution

postage
:"To ⑩... orcla- #ent*arenotan~

->Errors

-

inttone of clients
↳ Managebility



OWL

Data Source

Peer

Peer

Peer

Tracker

Tracker

Tracker

Metadata of

where data is

cached
-FileSystem - Decentralized dataplane
-> Database Centralized control plane

- -
-

-

↓ data transfer file?
-

which perceeache N
PeerI ⑳ what

-
lache data

8 which peers

dateinI eache X fetch
data from

-> Processes that where

want to fetch
data



OWL DESIGN

Peers, Superpeers
Trackers
Ephemeral Distribution Trees
Tracker Sharding
Fault Tolerance



Peers, SUPERPEER

What is a Peer?

Simple API, functionality
Ask Tracker where to fetch
Cache in memory / local disk

SuperPeer
Standalone process (no client)
More resources for caching

Peer

Client API

Application
to update

-T API

->

hard peers.

memory I

y ↳ read-blob()

> tracker

-
·local disk virtual

machine

Mocto
all local disk



TRACKERS

Centralized state for large number of peers
Peers register with a random tracker

What is state?
Chunk à Peers caching it
Peer à List of chunks cached

Soft-state (similar to GFS)

Tracker

millions of pears
*in a data center

-> Two Datastructure

chunk -
which peers

.. Peer 2 -> Chuck1, chats...

-Bottleneckpere

Single Tracker-Fault
Tolerance

For state
- Memory



DISTRIBUTION TREES

To fetch data
Peer sends get_data(range) à Chunks
For a chunk, getSource(chunk) à

Peer/Super Peer/External Storage

Trackers
Build ephemeral distribution tree
Stream data from peers
Locality based

⑤.
.

..:
blob

-

id
20 I 312MB]

↑X ↳ 11 chuales

if c. Size: 3MB read
-
1-

samepeer directly read

toachart read

the



POLICIES IN TRACKERS

Selection Policy
Which peer should we fetch from 

Caching Policy
Which blocks should be stored in memory

Buckets to control configuration across applications

⑰
- 1
③ O ⑬

-> locality based, load balancing

-> Cache eviction
LRU as default, least rare chunk is evicted.



Tracker Sharding

Millions of peers, tracker bottlenecks
Partition peers across trackers

Challenge?

- peers pick a random trackers

- We need to share knowledge

of chunks cached by peers
in

other
tracker!

- Periodically exchange
list of

cached
Chunks



VIRTUAL SUPERPEERS

What data should a peer store?
So far: Data already fetched a peer
Can we use a peer for caching other data?

Partition cache space into peer / virtual superpeer
Use spare memory on the machine

Tracker-only concept!



SUMMARY

Problem: Content distribution is challenging
Approach: Decentralized data-plane, centralized control plane

Features
- Ephemeral data distribution trees
- Policies on tracker for selection, caching
- Sharding trackers for scalability, fault tolerance



DISCUSSION
https://forms.gle/cbAyPYsVGqdcaZyx9



What is one disadvantages of the design used in Owl? Construct one scenario to highlight how 
this disadvantages might affect a client.

- Client needs to sacrifice memory/disk space - affects
-

performance

~ If you
use no space

on
clients, eaching

is only on

super peers,
which is similar to hierarchical caching↑ -peer churn could be high - if app is short lived

-client network bandwidth is used by Owl (eep for hot)
data

-shard paces -> tracker only looks at
-> sacrifice

locality

peers within shard
by RPCs to tracker

-very small files -> latency
added





NEXT UP

Next steps:
- TPU Paper
- Midterm 2, Dec 6th

- Poster session, Dec 13th


