CS 744: OWL

Shivaram Venkataraman Fall 2022

ADMINISTRIVIA

Project checkin – feedback GPU availability

Midterm 2: Dec 6th in class

Poster presentation: Dec 13th

Final report: Dec 20th

NEW DATA, HARDWARE MODELS

CONTENT DISTRIBUTION

What is content?

Docker containers

Al models

Search indexes

How is this workload different?

CHALLENGES / GOALS

Goals

Minimize requests to external storage

Latency of content fetch

Availability

Challenges

Load spikes hot content

Different policies for contents

Manageability

PRIOR SOLUTIONS

Hierarchical caching

BitTorrent

- Need a lot of resources
- Quotas, Traffic bursts

- Scalable, decentralized
- Stale peer data,
- Lack of global picture

OWL

Data Source

Peer

Peer

Peer

Tracker

Tracker

OWL DESIGN

Peers, Superpeers

Trackers

Ephemeral Distribution Trees

Tracker Sharding

Fault Tolerance

PEERS, SUPERPEER

What is a Peer?

Simple API, functionality

Ask Tracker where to fetch

Cache in memory / local disk

Application

Client API

Peer

SuperPeer

Standalone process (no client)

More resources for caching

TRACKERS

Centralized state for large number of peers Peers register with a random tracker

What is state?

Chunk → Peers caching it

Peer → List of chunks cached

Soft-state (similar to GFS)

DISTRIBUTION TREES

To fetch data

Peer sends get_data(range) → Chunks

For a chunk, getSource(chunk) →

Peer/Super Peer/External Storage

Trackers

Build ephemeral distribution tree

Stream data from peers

Locality based

POLICIES IN TRACKERS

Selection Policy

Which peer should we fetch from

Caching Policy

Which blocks should be stored in memory

Buckets to control configuration across applications

TRACKER SHARDING

Millions of peers, tracker bottlenecks
Partition peers across trackers

Challenge?

VIRTUAL SUPERPEERS

What data should a peer store?

So far: Data already fetched a peer

Can we use a peer for caching other data?

Partition cache space into peer / virtual superpeer
Use spare memory on the machine

Tracker-only concept!

SUMMARY

Problem: Content distribution is challenging

Approach: Decentralized data-plane, centralized control plane

Features

- Ephemeral data distribution trees
- Policies on tracker for selection, caching
- Sharding trackers for scalability, fault tolerance

DISCUSSION

https://forms.gle/cbAyPYsVGqdcaZyx9

What is one disadvantages of the design used in Owl? Construct one scenario to highlight how this disadvantages might affect a client.						

NEXT UP

Next steps:

- TPU Paper
- Midterm 2, Dec 6th
- Poster session, Dec 13th