
CS 744: PARAMETER SERVERS

Shivaram Venkataraman
Fall 2022

Hello !

ADMINISTRIVIA

- Assignment 2 is due on Oct 12 (Wed) at 10am!
- Course project groups are also due same time?!

→ Piazza

↳
Your own project

↳ Seed ideas , paper pointers

Scalable Storage Systems

Datacenter Architecture

Resource Management

Computational Engines

Machine Learning SQL Streaming Graph

Applications
Pytorih
Distributed#

PipeDream

diff schemes

to
Distributed

training

Machine Learning

PyTorch
Distributed DataParallel
Easy-to-use Interface
Model replicated on every worker

PipeDream
Model and pipeline-parallelism
Split model across workers

Commonalities?

1M parameters

≈ SMB storage

Cif dense)
model
[0-25 , 0.5 ,

-
- -

- -]

gradient
[0 . I ,

0 - 02
,

-
- -

-

-]

training Deep Learning
models

→ Dense
models and

dense updates to
models

PARAMETER SERVER: MOTIVATION

- Large training data 1TB to 1PB
- Models with 109 to 1012 parameters

- Goals
– Efficient communication
– Flexible synchronization
– Elastic Scalability
– Fault Tolerance and Durability

sparse updates

→
1 training example

compute gradient
↳ mostly zeros

few non
-
zeros

→ Both computation and

Comm
. only for non -

Zero

entries

EXAMPLE WORKLOAD

Ad Click Prediction
- Trillions of clicks per day
- Very sparse feature vectors

Computation flow

W
,
but only

-1mi
needful

part of it

event
,

"

example
"

/
=

-

split☐
[0 0 0 - - -

.
0.25 . . _§ train

D= millions or data
more

i. compute gradient _

writ current model

Density of
W

, depends on
data

properties
2. Push gradients

to servers

3. [server] updated value of W

ARCHITECTURE
-

Model is

stranded or

partitionedBased on

size of
training

data

Num of
workers

i
1. = Nunn 8

.

different
servers _

: computation
could

use
diff

Based on
-

worker group
number of

'
-

→

NFS•rhFS-
parameters

REPRESENTATION

- Key value pairs e.g., (featureID, weight)

- Assume keys are ordered.
Easier to apply linear algebra operations

- Interface supports range push and pull
w.push(R, dest)

- Support for user-defined functions on server-side

push (0 , 2- 5)

- -

-

T w. ☐

-

TASK DEPENDENCY Model might
not

converge

Jyp, across iters

If you
want to mimic single thread

-
then item

"

1+1 can start only after

iter i completes

i*ñ training

at the cost of stale model contents

CONSISTENCY MODELS

User defined filters
Significantly modified filter

KKT filter

7- bounded delay

µ
worker tide ↳ upper

band on staleness

gradient → Creates dependencies
↳ g. , , , , ,

,,
,

, ,, ,,g,,µagµ,g
Ignore any

values < le -4

IMPLEMENTATION: VECTOR CLOCKS→ logical
Distributed event j happen before event d timestamps

Systems
-

3 Processes ← - - -

-

0
"

'

d before j-

3 tuple
i

⑤
. ganef

concurrent
compute
-
inc 1

send
- inc 1 ,

ʳᵈÑ"

yapping
before

.

. Compare all
coordinates☒

" I
dock

if Tsi <
= Tsj

and less than

rear

- i.no local , copy
0ᵗʰ"

in at least one of
them

process
clock

in the message

Each kyv pair has a vector clock associated

with it

- Every push you
increment vector clock .

- Every pull
returns clock

value .

Optimization

IMPLEMENTATION: REPLICATION

Replication after
aggregation

Distributed Hash Tables [early 2000s]

- Partition the using
a

☆

ring
.

[

☒ |se✓er2|
0

" B
100k

Server 2 owns

look -200K - Replicas next two nodes on
the

replica
0 - 10° "

ring

FAULT TOLERANCE

1. Server manager assigns the new node a key range
to serve as master.

2. The node fetches the range of data to maintains as
master and k additional ranges to keep as slave.

3. The server manager broadcasts the node changes.
The recipients of the message may shrink their own data

- Ideas from

server addition (similar failure) DHT

I

[] → from this point

the new

membership
is in

effect .

SPARSE LR

② →
bounded staleness

-

user defined function

DISCUSSION
https://forms.gle/qPX1bBCAsd2fhL2i6

What are some of the downsides of using PS compared to implementing
Gradient Descent in PyTorch / Spark?

- PS assume sparse updates . what if updates are dense ?

- Comm but also memory
overheads

- Rept and consistency format
∅

- key , vector clocks etc . storage
overhead

- Gather + Scatter / Broadcast

- d-sync
could affect convergence

with dense updates
exec

How would you integrate PS with a resource manager like Mesos? What
would be some of the challenges?

-

"

tasks
"

in Maros is a
worker iteration

"

push
"

ends the task

→ Wait for task
allocations esp . if you

want

all workers
to finish

→
hose cache

between
iterations

b-

NEXT STEPS

Next class: Gavel
Assignment 2 is due soon!

