

CS 744: PARAMETER SERVERS

Shivaram Venkataraman Fall 2022

ADMINISTRIVIA

- Assignment 2 is due on Oct 12 (Wed) at 10am! -> Piazza
- Course project groups are also due same time?!

PyTorch

Distributed DataParallel Easy-to-use Interface Model replicated on every worker

PipeDream

Model and pipeline-parallelism Split model across workers gradient [0.1, 0.02,]

Training peep Learning models -> Dense models and dense updates to models **Commonalities**?

1M parameters

~ 8MB storage

model (if dense) [0.25, 0.5,]

Machine Learning

PARAMETER SERVER: MOTIVATION

- Large training data ITB to IPB
- Models with 10⁹ to 10¹² parameters
- Goals
 - Efficient communication
 - Flexible synchronization
 - Elastic Scalability
 - Fault Tolerance and Durability

EXAMPLE WORKLOAD

Ad Click Prediction revent, "example"

- Trillions of clicks per day
- Very sparse feature vectors $\begin{bmatrix} 0 & 0 & 0 & 0.25 & ... & 0 \end{bmatrix}$ Computation flow d = millions or more

1. Compute gradient wrt current model Density of W, depends on data properties 2. Push gradients to servers 3. [Server] updated value of W

REPRESENTATION

push (0, 2.5)

- Key value pairs e.g., (featureID, weight)
- Assume keys are ordered.
 Easier to apply linear algebra operations
- Interface supports range push and pull
 w.push(R, dest) [1:4]
- Support for user-defined functions on server-side

Mo

CONSISTENCY MODELS

kyv pair has a vector clock associated Each with it - Every push you increment vector clock. - Every pull returns clock value.

Optimization

IMPLEMENTATION: REPLICATION

FAULT TOLERANCE → Idea from Nerver addition (similar failure) I. Server manager assigns the new node a key range to serve as master.

- 2. The node fetches the range of data to maintains as master and k additional ranges to keep as slave.
- 3. The server manager broadcasts the node changes. From this point The recipients of the message may shrink their own data the new membership is in Yet.

Algorithm 3 Delayed Block Proximal Gradient [31]

Scheduler:

- 1: Partition features into b ranges $\mathcal{R}_1, \ldots, \mathcal{R}_b$
- 2: for t = 0 to T do
- Pick random range \mathcal{R}_{i_t} and issue task to workers 3:
- 4: end for

Worker r at iteration t

- 1: Wait until all iterations before $t \tau$ are finished \rightarrow bounded statements
- 2: Compute first-order gradient $g_r^{(t)}$ and diagonal second-order gradient $u_r^{(t)}$ on range \mathcal{R}_{i_t}
- 3: Push $g_r^{(t)}$ and $u_r^{(t)}$ to servers with the KKT filter 4: Pull $w_r^{(t+1)}$ from servers

Servers at iteration t

- 1: Aggregate gradients to obtain $q^{(t)}$ and $u^{(t)}$
- 2: Solve the proximal operator

$$\begin{split} w^{(t+1)} &\leftarrow \operatorname*{argmin}_{u} \Omega(u) + \frac{1}{2\eta} \| w^{(t)} - \eta g^{(t)} + u \|_{H}^{2}, \\ \text{where } H &= \operatorname{diag}(h^{(t)}) \text{ and } \| x \|_{H}^{2} = x^{T} H x \end{split}$$

SPARSE LR

User defined function

DISCUSSION

https://forms.gle/qPX1bBCAsd2fhL2i6

What are some of the downsides of using PS compared to implementing Gradient Descent in PyTorch / Spark?

How would you integrate PS with a resource manager like Mesos? What would be some of the challenges?

NEXT STEPS

Next class: Gavel

Assignment 2 is due soon!