CS 744: PARAMETER SERVERS

Shivaram Venkataraman
Fall 2022
ADMINISTRIVIA

- Assignment 2 is due on Oct 12 (Wed) at 10am!
- Course project groups are also due same time?!
PyTorch
Distributed DataParallel
Easy-to-use Interface
Model replicated on every worker

PipeDream
Model and pipeline-parallelism
Split model across workers

Commonalities?
PARAMETER SERVER: MOTIVATION

- Large training data 1TB to 1PB
- Models with 10^9 to 10^{12} parameters

- Goals
 - Efficient communication
 - Flexible synchronization
 - Elastic Scalability
 - Fault Tolerance and Durability
EXAMPLE WORKLOAD

Ad Click Prediction
- Trillions of clicks per day
- Very sparse feature vectors

Computation flow
- Key value pairs e.g., (featureID, weight)

- Assume keys are ordered.
 Easier to apply linear algebra operations

- Interface supports range push and pull
 w.push(R, dest)

- Support for user-defined functions on server-side
iter 10: gradient $\xrightarrow{\text{push \\& pull}}$ o

iter 11: gradient $\xrightarrow{\text{push \\& pull}}$ o

iter 12: gradient $\xrightarrow{\text{pu}}$
CONSISTENCY MODELS

(a) Sequential
(b) Eventual
(c) 1 Bounded delay

User defined filters
 Significantly modified filter

KKT filter
IMPLEMENTATION: VECTOR CLOCKS

(a, b, c, d, e, f, g)
IMPLEMENTATION: REPLICATION

Replication after aggregation
1. Server manager assigns the new node a key range to serve as master.

2. The node fetches the range of data to maintains as master and k additional ranges to keep as slave.

3. The server manager broadcasts the node changes. The recipients of the message may shrink their own data.
Algorithm 3 Delayed Block Proximal Gradient [31]

Scheduler:
1: Partition features into b ranges $\mathcal{R}_1, \ldots, \mathcal{R}_b$
2: for $t = 0$ to T do
3: \hspace{1cm} Pick random range \mathcal{R}_{i_t} and issue task to workers
4: end for

Worker r at iteration t
1: Wait until all iterations before $t - \tau$ are finished
2: Compute first-order gradient $g_r^{(t)}$ and diagonal second-order gradient $u_r^{(t)}$ on range \mathcal{R}_{i_t}
3: Push $g_r^{(t)}$ and $u_r^{(t)}$ to servers with the KKT filter
4: Pull $w_r^{(t+1)}$ from servers

Servers at iteration t
1: Aggregate gradients to obtain $g^{(t)}$ and $u^{(t)}$
2: Solve the proximal operator

$$w^{(t+1)} = \arg\min_u \Omega(u) + \frac{1}{2\eta} \|w^{(t)} - \eta g^{(t)} + u\|_H^2,$$

where $H = \text{diag}(h^{(t)})$ and $\|x\|_H^2 = x^T H x$
DISCUSSION

https://forms.gle/qPX1bBCAsd2fhL2i6
What are some of the downsides of using PS compared to implementing Gradient Descent in PyTorch / Spark?
How would you integrate PS with a resource manager like Mesos? What would be some of the challenges?
Next class: Gavel
Assignment 2 is due soon!