
CS 744: Powergraph

Shivaram Venkataraman
Fall 2022

Welcome back!

ADMINISTRIVIA

- Midterm grading in progress
- Course Project: GCP credits

-> end of
this week

Scalable Storage Systems

Datacenter Architecture

Resource Management

Computational Engines

Machine Learning SQL Streaming Graph

Applications

->

GRAPH DATA

Datasets Application

-web graph hyperlinks

&
- Social network graph

Search (important
or

apages)
- Maps. Locations - vertices

Recommendation
Roads -> edges↳

- knowledge graph -
classify chemical structures

was 2008-2014O⑳a strident
- Chemicals (Molecules

GRAPH ANALYTICS

Perform computations on graph-structured data

Examples
PageRank
Shortest path
Connected components
…

a serving graph data

"Octp"
-> traverse graph return
results

-> latency sensitive
-

i Analytics-

-Mz@
Classic

PageRank Apply ML

on graph
connected structured
components data

PREGEL: PROGRAMMING MODEL
Message combiner(Message m1, Message m2):

return Message(m1.value() + m2.value());

void PregelPageRank(Message msg):
float total = msg.value();

vertex.val = 0.15 + 0.85*total;

foreach(nbr in out_neighbors):
SendMsg(nbr, vertex.val/num_out_nbrs);

~ 2008 - 2009

"Think like a vertex"

#graphalgorithms sed mig
② Reau inputs Comp on

-> to

from ubos
->

the vertex m bus

NATURAL GRAPHS
1. Exp. distribution of

nbr hood lives

- few vertices very large degree S
- large number with very

small

2. Lack of symmetry
- Imbalance

in work done per
E

Vertex

- Imbalance lead
to low

utilization

↳ stragglers

POWERGRAPH

Programming Model:
Gather-Apply-Scatter

Better Graph Partitioning
with vertex cuts

Sync / Async execution

-> builds on
think like a

vertex

-> single machine

->Distributed

GATHER-APPLY-SCATTER
Gather: Accumulate info from nbrs

Apply: Accumulated value to vertex

Scatter: Update adjacent edges

// gather_nbrs: IN_NBRS
gather(Du, D(u,v), Dv):

return Dv.rank / #outNbrs(v)

sum(a, b): return a+b

apply(Du, acc):
rnew = 0.15 + 0.85 * acc
Du.delta = (rnew - Du.rank)/

#outNbrs(u)
Du.rank = rnew

// scatter_nbrs: OUT_NBRS
scatter(Du,D(u,v),Dv):

if(|Du.delta|> ε) Activate(v)
return delta

for source dest
I

state

-
-

->

↑

->edge state

Accumulators-

accumulated
This results of gather

->

Gather -> input vertex, edge, states

returns accumulator

Apply is return/update vertex state

scatter -
takes update vertex state -

·

=
and can update ubrs.

EXECUTION MODEL

Active Queue

Accumulators

Vertex State

Gather

Apply

Scatter

aec

gather CVoT

At beginning
S - Clist all ubes (vo)7

-
Activate all vertices T

state < get their state

accumulate

E O. I5 L

Du,Dr
->

apply (r.) Vo
read acc for Vo

read state forv/.. ... In/We
comp. <-write back updated

Next Ifer Quene

- activate bus in

-- next iteration

CACHING

Active Queue

Delta caching
Cache accumulator value for vertex

Optionally scatter returns a delta
Accumulate deltas

Accumulators

Vertex State

-

Persist a cross

iters

Crease

-

Avoid runninggatherthe

↑
Reuse acc computed in

· teration~>

previous I

nbrs have
->If few

changed

SYNC VS ASYNC

Sync Execution
Gather for all active vertices,
followed by Apply, Scatter

Barrier after each minor-step

Async Execution
Execute active vertices,
as cores become available

No Barriers! Optionally serializable

&r/vs) vs - carwor (vos] minor
bere

I
·

Seventileridethese-

All the reads happen

before updates :

scatter. (No)

DISTRIBUTED EXECUTION

Symmetric system, no coordinator

Partition graph across machines
Communicate to spread updates, read state

Gratea parb,he

edndl stosaysD
worker z

-

GRAPH PARTITIONING"read-only" ghost
vertices

replica ghostertices primary

-

-

-

I &
I

⑧

- Assign a vertex to a
machine

- Assign edge to particular
- Implies edges

are cut
machine

across machines -

Minimize this
vertens
on many

* when

- Induce imbalance for
natural machines, one primary

*

graphy

RANDOM, GREEDY OBLIVIOUS

Three distributed approaches:
Random Placement

Coordinated Greedy Placement

Oblivious Greedy Placement

Assign edges
to machines

↳ given
an edge, choose

i

tigw,
random machine

↳ If Fiter vertex is already placed ↳
psy wefavor those machines

↳ Avoid coordination, only
track

vertices present locally

OTHER FEATURES

Async Serializable engine
Preventing adjacent vertex from running simultaneously
Acquire locks for all adjacent vertices

Fault Tolerance
Checkpoint at the end of super-step for sync

SUMMARY

Gather-Apply-Scatter programming model
Vertex cuts to handle power-law graphs
Balance computation, minimize communication

DISCUSSION
https://forms.gle/K7xk2KybTXf3XX3b6

Consider the PageRank implementation in Spark vs synchronous PageRank in
PowerGraph. What are some reasons why PowerGraph might be faster?

① You can activate a embert of
vertices across

iterations => work
goes

down as iters progress

&Partition in spark -> randomly partitions↑ smarter partitioning here? -lower
communication

&Delta caling -> computation for active vertices

can
be lowered

diminating Comm goes up with

Partition time?
returns men machine

getsome P

%
cose

↳ Sub-linear
&

↓
the more

machines

NEXT STEPS

Next class: Marius

