CS 744: PYTORCH

Shivaram Venkataraman

Fall 2022
Assignment 2 out! Due Oct 12th 11 AM!

Paper review deadline – 12:59pm on Tue/Thu

Bid on topics, submit group (1 sentences) – Oct 11

Title confirmed – Oct 15

Project Proposal (2 pages) – Oct 25
 - Introduction
 - Related Work
 - Timeline (with eval plan)
WRITING AN INTRODUCTION

1-2 paras: what is the problem you are solving
why is it important (need citations)

1-2 paras: How other people solve and why they fall short

1-2 paras: How do you plan on solving it and why your approach is better

1 para: Anticipated results or what experiments you will use
RELATED WORK, EVAL PLAN

Group related work into 2 or 3 buckets (1-2 para per bucket)
Explain what the papers / projects do
Why are they different / insufficient

Eval Plan
Describe what datasets, hardware you will use
Available: Cloudlab, Google Cloud (~$150), Jetson TX2 etc.
Scalable Storage Systems

Datacenter Architecture

Resource Management

Computational Engines

Applications

Machine Learning SQL Streaming Graph

Applications

Machine Learning SQL Streaming Graph

Computational Engines

Scalable Storage Systems

Resource Management

Datacenter Architecture
EMPIRICAL RISK MINIMIZATION

\[\min_{w \in \mathbb{R}^d} \sum_{i=1}^{N} f(w, z_i) + P(w) \]

- Function
- Data (Examples)
- Model
- Regularization
STOCHASTIC GRADIENT DESCENT

\[w^{(k+1)} = w^{(k)} - \alpha_k \nabla f(w^{(k)}) \]

Initialize \(w \)
For many iterations:
 Loss = Forward pass
 Gradient = backward
 Update model
End
DATA PARALLEL MODEL TRAINING
COLLECTIVE COMMUNICATION

Broadcast, Scatter

MPi_Bcast

Gather, Reduce

MPi_Gather

MPi_Scatter

MPi_Reduce

From https://mpitutorial.com/tutorials/
ALL REDUCE USING A RING

MPI_Allreduce

From https://mpitutorial.com/tutorials/
DISTRIBUTED DATA PARALLEL API

setup model and optimizer
net = nn.Linear(10, 10)
net = par.DistributedDataParallel(net)
opt = optim.SGD(net.parameters(), lr=0.01)

run forward pass
inp = torch.randn(20, 10)
exp = torch.randn(20, 10)
out = net(inp)

run backward pass
nn.MSELoss()(out, exp).backward()

update parameters
opt.step()
GRADIENT BUCKETING

Why do we need gradient bucketing?
Gradient Accumulation

```python
ddp = DistributedDataParallel(net)
with ddp.no_sync():
    for inp, exp in zip(inputs, expected_outputs):
        # no synchronization, accumulate grads
        loss_fn(ddp(inp), exp).backward()
    # synchronize grads
    loss_fn(ddp(another_inp), another_exp).backward()
opt.step()
```
IMPLEMENTATION

Bucket_cap_mb

Parameter-to-bucket mapping

Round-robin ProcessGroups
SUMMARY

Pytorch: Framework for deep learning
DistributedDataParallel API
Gradient bucketing, AllReduce
Overlap computation and communication
DISCUSSION

https://forms.gle/jivzEEO5oz8tugYH9
Figure 9: Scalability

(a) ResNet50 on NCCL (b) ResNet50 on Gloo (c) BERT on NCCL (d) BERT on Gloo
What could be some challenges in implementing similar optimizations for AllReduce in Apache Spark?
Next class: PipeDream
Assignment 2 is out!

Project Proposal – Check Piazza!
Figure 6: Per Iteration Latency Breakdown