Hello !

CS 744: PYWREN

Shivaram Venkataraman Fall 2022

ADMINISTRIVIA

Project checkins due Nov 23rd Poster presentation: Dec 13th Final report: Dec 20th

Project grade breakdown → 3°⁷. Intro: 5% Mid-semester checkin: 5% Poster: 10% Final Report: 10%

NEW DATA, HARDWARE MODELS

Moud computing I data analytics Stack

Serverless Computing

Machine Learni-g

Compute Accelerators

New

System designs

Infiniband Networks

Non-Volatile Memory

SERVERLESS COMPUTING

I not actually without servers

Amazon EC2 Virtual machine instances

User

\rightarrow What instance type?

What base image?

How many to spin up?

What price? Spot?

) 3 machine or 100 machines?

MOTIVATION: USABILITY a CS major use this?							
😵 Instances 🛛 🕫	2 RDS ElastiCac	he Redshift	OpenSearch	Save 50%+ on A	WS with Autopilot →		
Region US East (N. Virginia) 👻	Pricing Unit Cost Instance • Hourly •	Reserved 1-year - No Upfront	Columns Compare S	elected Clear Filters	Expo		
Name		API Name	Instance Memory 👌 <u>vCPU</u>	<u>s</u> ∲ Instan	ce Storage 🍦 N		
Filter		Filter	Min Mem: 0 Min	vCPUs: 0 Min	Storage: 0		
C5 High-CPU Double Extra Larg		c5d.2xlarge	16.0 GiB	8 vCPUs	200 GB NVMe SSD		
C5 High-CPU Extra Large		c5d.xlarge	8.0 GiB	4 vCPUs	100 GB NVMe SSD		
M6A 24xlarge		m6a.24xlarge	Mem) 384.0 GIB	96 vCPUs	EBS only		
M5DN Extra Large		m5dn.xlarge	16.0 GiB	4 vCPUs	150 GB NVMe SSD		
C5 High-CPU Metal		c5.metal	192.0 GiB	96 vCPUs	EBS only		
C6A Eight Extra Large		c6a.8xlarge	64.0 GiB	32 vCPUs	EBS only		
D3EN 12xlarge		d3en.12xlarge	192.0 GiB	48 vCPUs 335	520 GB (24 * 13980 GB HDD)		
D3EN Eight Extra Large		d3en.8xlarge	128.0 GiB	32 vCPUs 223	680 GB (16 * 13980 GB HDD)		
R5AD 16xlarge		r5ad.16xlarge	512.0 GiB	64 vCPUs 2400) GB (4 * 600 GB NVMe SSD)		
M5A Double Extra Large		m5a.2xlarge	32.0 GiB	8 vCPUs	EBS only		
M5N Metal		m5n.metal	384.0 GiB	96 vCPUs	EBS only		
C6ID Eight Extra Large		c6id.8xlarge	64.0 GiB	32 vCPUs	1900 GB NVMe SSD		
M5AD Double Extra Large		m5ad.2xlarge	32.0 GiB	8 vCPUs	300 GB NVMe SSD		
M6ID Extra Large		m6id.xlarge	16.0 GiB	4 vCPUs	237 GB NVMe SSD		

Push a button Why is there no

EE grads

MRI inages

"cloud button"?

When to use the Cloud ?

Data

Large amounts of data. Can't store locally
Shared data across users
Long term storage
Compute

es)

- Need lots of CPUs for she - Varying comp

- No admin of

Cloud

ABSTRACTION LEVEL ?

Language Integrated

Launch contained Function Scheduler Application side scan run on your laptop La Tracking which operator should be non rext MR() > map() finished | start reduce tasks Infrastructure side (AWS) resources Container which machine Hat dever decision [-to minimize cost etc. are use

HOW IT WORKS

STATELESS FUNCTIONS: WHY NOW ?

Τlo

0

 \bigcirc

460 × n

53

What are the trade-offs ?

- All data accesses	0	
an remote accesses	Storage Medium	Write Speed (MB/s)
whe read	SSD on c3.8xlarge	208.73
act is I remote	SSD on i2.8xlarge	460.36
NUMORIE / C.	4 SSDs on i2.8xlarge	1768.04
access is competition	S 3	501.13
to reading data ->	Nower	
from SSD	than	
Touris		

4SSD,

PARAMETER SERVERS

Sparse ML models La subset parameters for 2 iteration

Use lambdas to run "workers"

Parameter server as a service ?

Lambda / Container limited CPU/ memory vesources.

APT trainers / workers get update Parameter Server

KV store

WHEN SHOULD WE USE SERVERLESS?

SUMMARY

Motivation: Usability of big data analytics

Approach: Language-integrated cloud computing

Features

- Breakdown computation into stateless functions
- Schedule on serverless containers
- Use external storage for state management

Open question on scheduling, overheads

DISCUSSION

https://forms.gle/GF1kkME52tvDRdDC8

Consider you are a cloud provider (e.g., AWS) implementing support for serverless. What could be some of the new challenges in scheduling these workloads compared to schedulers we have studied in this class ? How would you go about addressing them?

NEXT UP

Happy Thanksgiving!

Next steps:

- Mid-semester project check-in, Nov 23rd
- After break: Owl, TPU papers
- Midterm 2, Dec 6th