Hi!
- Assignment 1: Due Sep 28 at 11am
- Assignment 2: ML will be released Sep 28th evening
- REMINDER: Submit your discussions
 - Within 24 hrs after end of class (11am next day)
 - Each student needs to submit
- Course project details: Next week

< Upload code and report on Canvas

3 pm
MOTIVATION: PROGRAMMABILITY

Most real applications require multiple MR steps
- Google indexing pipeline: 21 steps
- Analytics queries (e.g. sessions, top K): 2-5 steps
- Iterative algorithms (e.g. PageRank): 10’s of steps or 100's of steps

Multi-step jobs create spaghetti code
- 21 MR steps → 21 mapper and reducer classes
MOTIVATION: PERFORMANCE

MR only provides one pass of computation
- Must write out data to file system in-between each of these MR jobs

Expensive for apps that need to reuse data
- Multi-step algorithms (e.g. PageRank)
- Interactive data mining
#include "mapreduce/mapreduce.h"

// User's map function
class SplitWords: public Mapper {
 public:
 virtual void Map(const MapInput& input) {
 const string& text = input.value();
 const int n = text.size();
 for (int i = 0; i < n;) {
 // Skip past leading whitespace
 while (i < n && isspace(text[i])) i++;
 // Find word end
 int start = i;
 while (i < n && !isspace(text[i])) i++;
 if (start < i) Emit(text.substr(start, i - start), "1");
 }
 }

 REGISTER_MAPPER(SplitWords);
};

// User's reduce function
class Sum: public Reducer {
 public:
 virtual void Reduce(ReduceInput* input) {
 int64 value = 0;
 while (!input->done()) {
 value += StringToInt(input->value());
 input->NextValue();
 }
 // Emit sum for input->key()
 Emit(IntToString(value));
 }

 REGISTER_REDUCER(Sum);
};

REGISTER_REDUCER(Sum);

int main(int argc, char** argv) {
 ParseCommandLineFlags(argc, argv);

 MapReduceSpecification spec;
 for (int i = 1; i < argc; i++) {
 MapReduceInput* in = spec.add_input();
 in->set_format("text");
 in->set_filepattern(argv[i]);
 in->set_mapper_class("SplitWords");
 }

 // Specify the output files
 MapReduceOutput* out = spec.output();
 out->set_filebase("/gfs/test/freq");
 out->set_num_tasks(100);
 out->set_format("text");
 out->set.reducer_class("Sum");

 // Do partial sums within map
 out->set_combiner_class("Sum");

 // Tuning parameters
 spec.set_machines(2000);
 spec.set_map_megabytes(100);
 spec.set_reduce_megabytes(100);

 // Now run it
 MapReduceResult result;
 if (!MapReduce(spec, &result)) abort();
 return 0;
}
val file = spark.textFile("hdfs://...")
val counts = file.flatMap(line => line.split(" "))
 .map(word => (word, 1))
 .reduceByKey(_ + _)

counts.save("out.txt")

file.filter(line => line.startsWith("ERROR"))
APACHE SPARK

Programmability: clean, functional API
- Parallel transformations on collections
- 5-10x less code than MR
- Available in Scala, Java, Python and R

Performance
- In-memory computing primitives
- Optimization across operators
SPARK CONCEPTS

Resilient distributed datasets (RDDs)
- Immutable, partitioned collections of objects
- May be cached in memory for fast reuse

Operations on RDDs
- Transformations (build RDDs)
- Actions (compute results)

Restricted shared variables
- Broadcast, accumulators
EXAMPLE: LOG MINING

Find error messages present in log files interactively
(Example: HTTP server logs)

```scala
lines = spark.textFile("hdfs://...")
errors = lines.filter(_.startsWith("ERROR"))
messages = errors.map(_.split('\t')(2))
messages.cache()  // marks that messages should be kept in memory when computed
messages.filter(_.contains("foo")).count
```
Example: Log Mining

Find error messages present in log files interactively
(Example: HTTP server logs)

```python
lines = spark.textFile("hdfs://...")
errors = lines.filter(_.startsWith("ERROR"))
messages = errors.map(_.split('\t')(2))
messages.cache()
messages.filter(_.contains("foo")).count = (2
messages.filter(_.contains("bar")).count
...

Result: search 1 TB data in 5-7 sec
(vs 170 sec for on-disk data)
Fault Recovery

messages = textFile(...).filter(_.startsWith("ERROR"))
  .map(_.split('\t')(2))

HDFS File → Filtered RDD → Mapped RDD

Crashes

0
1
2

Filter
map

lineage: list of transformations used to create the RDD. HDFS file → filter → map

Inputs are available. Idempotent functions. Immutable
**OTHER RDD OPERATIONS**

<table>
<thead>
<tr>
<th>Transformations (define a new RDD)</th>
<th>Actions (output a result)</th>
</tr>
</thead>
<tbody>
<tr>
<td>map</td>
<td>collect</td>
</tr>
<tr>
<td>filter</td>
<td>reduce</td>
</tr>
<tr>
<td>sample</td>
<td>take</td>
</tr>
<tr>
<td>groupByKey</td>
<td>fold</td>
</tr>
<tr>
<td>reduceByKey</td>
<td>count</td>
</tr>
<tr>
<td>cogroup</td>
<td>saveAsTextFile</td>
</tr>
<tr>
<td>flatMap</td>
<td>join</td>
</tr>
<tr>
<td>union</td>
<td>cross</td>
</tr>
<tr>
<td>union</td>
<td>mapValues</td>
</tr>
<tr>
<td>join</td>
<td>...</td>
</tr>
<tr>
<td>cross</td>
<td>...</td>
</tr>
<tr>
<td>load</td>
<td>...</td>
</tr>
</tbody>
</table>

**Diagram:**
- **Driver**
  - Task 1
  - Task 2
  - Task 3
  - Reduction function

- Tasks 1, 2, and 3:
  - Task 1
  - Task 2
  - Task 3
  - Reduction function
DEPENDENCIES

Narrow Dependencies:
- map, filter
- union
- join with inputs co-partitioned

Wide Dependencies:
- groupByKey
- join with inputs not co-partitioned

1 to 1 dep

mapper

reduce

shuffle operation between RDDs
Captures RDD dependency graph

Pipelines functions into “stages”

Stage boundaries are shuffle operations
Cache-aware for data reuse, locality

Partitioning-aware to avoid shuffles

Stage 1
- A: map
- B: groupBy
- C: D:

Stage 2
- E: map
- F: union
- G: join

Stage 3

shuffle files in local disk

= cached partition
SUMMARY

Spark: Generalize MR programming model

Support in-memory computations with RDDs

Job Scheduler: Pipelining, locality-aware
DISCUSSION
for (i <- 1 to numIters) {
    val modelBC = sc.broadcast(model)
    val grad = data.mapPartitions(iter => gradient(iter, modelBC.value))
    val aggGrad = grad.reduce(case(x, y) => add(x, y))
    model = computeUpdate(aggGrad, model)
}

Binary Reduction Tree

var g = grad
var numPartitions = g.partitions.size
while (numPartitions > 1) {
    numPartitions = numPartitions / 2
    val part = new HashPartitioner(numPartitions)
    g = g.mapPartitionsWithIndex { case (partId, itr) =>
        Iterator.single(partId / 2, itr.next)
    }.reduceByKey(part, reduceFunc).values
}
When would reduction trees be better than using `reduce` in Spark?

- Maybe better fault recovery
- Driver might be overloaded with too much data and too much compute
- Reduces traffic across racks with rack-level agg first
When would reduction trees not be a good idea?

- data to be transmitted is small
  "overhead"
  - number of tasks to launch
  - network connections to open
  - More overall data to transmit
NEXT STEPS

Next week: Resource Management
- Mesos
- DRF
Assignment 1 is due soon!