
CS 744: SPARK STREAMING

Shivaram Venkataraman
Fall 2022

Hello!

ADMINISTRIVIA

- Course Projects feedback
- Assignment2 grades

- Midterm grades – this week?

Mid-semester, Check-In
-

towards end of Nor

~T Roger for
regrades

CONTINUOUS OPERATOR MODEL
Long-lived operators

Distributed Checkpoints
for Fault Recovery

Naiad
Task

Control MessageDriver

Network Transfer

Mutable State

Stragglers ?

map window (Ss)

**
state

Back

pressure

CONTINUOUS OPERATORS
Replicate operators

is↳ each operator replicated

X to more
than I

machine

map

[resource consumption is higher]

Replicas should be in-sync

map - Fast recovery

SPARK STREAMING: GOALS

1. Scalability to hundreds of nodes

2. Minimal cost beyond base processing (no replication)

3. Second-scale latency

4. Second-scale recovery from faults and stragglers

-> high throughout

- esp. at large
scale

Istreaming context: time between input arriving

C m
and being reflected

-

Normal operation
recover from failures fast

DISCRETIZED STREAMS (DSTREAMS)Gather data

* 1- could contain event times different

similar
to spark

* Map Reduce
#I

2 30... time -

· Is W output
-

-

Divided time into
intervals

-

- at every
1s

- Overy is run
with stateless tasks I

- Output (and state) is saved

read in
state output

- batch
from prev

EXAMPLE
pageViews =
readStream(http://...,

"1s")

ones = pageViews.map(
event =>(event.url, 1))

counts =
ones.runningReduce(

(a, b) => a + b)

AP1: easy to write queries DStream: Discretized Stream

URL, Kafka, etc.
-

-

all keys

->

stream batch size
I

input

&
grouped<-

very similar map muthle ↓
->D

-hI for every key, mantain a running can

learning
nature

Law
or

any state · RDD or

A= [o, 1 data structure

stored in memory (

L disk

six) i-pos are -

: what state do you

retain?
t= 100

DSTREAM API

Transformations
Stateless: map, reduce, groupBy, join

Stateful:
Sliding window(“5s”) à RDDs with data in [0,5), [1,6), [2,7)

reduceByWindow(“5s”, (a, b) => a + b)

->similar to Flink

↳ spark

-> aggregates
values for

each key
↓

creates a siding window

SLIDING WINDOW

Add
previous 5
each time

batch size: Is
->on processing

time

window lize:
5s

↑
no longerused -> garbage collected

O
to
remove

and
t-I

add A+4

to

sliding
counts

-

STATE MANAGEMENT

Tracking State: streams of (Key, Event) à (Key, State)

events.track(
(key, ev) => 1,

(key, st, ev) => ev == Exit ? null : 1,

"30s”)

event limestamps

-- -

T
can be tracked

veer-defined
inside users query

class

↳
*

↳old state, event

ditate
new state

Time out to

forget states

SYSTEM IMPLEMENTATIONSimilar to

Spark/GFS etc. Module which reads input from
Kafka l HDES

↑ I

-

generated
from ->

query

.C talks -

how

frequently are -

-

inputs
pelled

⑧

OPTIMIZATIONS

Timestep Pipelining
No barrier across timesteps unless needed
Tasks from the next timestep scheduled before current finishes

Checkpointing
Async I/O, as RDDs are immutable
Truncate lineage after checkpoint

Talks are stateless

-> launch for each

limesteps

↑lineage is D iconboredin
- ↳ can launch

this

C
t = S

while per
reduce

RDD in memory is running
background save to disk to g

FAULT TOLERANCE: PARALLEL RECOVERY

Worker failure
- Need to recompute state RDDs stored on worker
- Re-execute tasks running on the worker

Strategy
- Run all independent recovery tasks in parallel
- Parallelism from partitions in timestep and across timesteps

-

-

->similar as spark

1)·mini

EXAMPLE
pageViews =
readStream(http://...,

"1s")

ones = pageViews.map(
event =>(event.url, 1))

counts =
ones.runningReduce(

(a, b) => a + b)

Asyna Clipt-lineage machine fails

/
I A ·

>

/P
I

recovery
h

1.

in parallel

FAULT TOLERANCE

Straggler Mitigation: Use speculative execution

Driver Recovery
- At each timestep, save graph of DStreams and Scala function objects
- Workers connect to a new driver and report their RDD partitions
- Note: No problem if a given RDD is computed twice (determinism).

- Always running

I
input ranges processed etc.

[- -
J

-

C
-

ats recovery
similar

SUMMARY

Micro-batches: New approach to stream processing

Simplifies fault tolerance, straggler mitigation

Unifying batch, streaming analytics

DISCUSSION
https://forms.gle/rkBykWeSgiQhPJf57

If the latency bound was made to 100ms, how do you think the above figure
would change? What could be the reasons for it?

-
What about 10s?

Increase but
I ⑤ limited

not too i parallelism
much across

-> fixed from timesteps
overheads
already amortized

① Utilization of each task is lower

->Time for task: fixed overheadI

A 100 MB

per - input time
metadata for

② Cross time step dependencies -> adds more
master

Consider the pros and cons of approaches in Naiad vs Spark Streaming. What
application properties would you use to decide which system to choose?

NEXT STEPS

Next class: Graph processing!
Midterm grades soon!

