Agenda

• Analytics space background
• Motivation
• Goal
• Approach
• Optimizations
• Results
• Flaws/Limitations
• Questions
Real life Analytics Pipeline

Raw data → Link Table → Page Rank → Desired results

Eg. Google Knowledge graph: 570M Vertices, 18B Edges (as in Mid 2017)
Real life Analytics Pipeline

Raw data → Link Table → Page Rank → Desired results

Tables
Real life Analytics Pipeline

Raw data → Link Table → Page Rank → Desired results

Graphs
Systems landscape
Motivation

• Currently separate systems exist to compute on these data representation.
• Ability to combine data sources.
• Enhance dataflow frameworks to leverage inherent positives.
Current drawbacks of dataflow frameworks

• Implementing iterative algorithms -> requires multiple stages of complex joins.
• Do not cover common patterns in graph algorithms -> Room for optimization.
• Unlike Spark, no fine grained control of data partitioning.
Current drawbacks of specialized systems

• Lacking ability for combining graphs with unstructured or tabular data
• Systems favoring snapshot recovery rather than fault tolerance like in Spark
What can we leverage?

- Immutability of RDD’s
- Reusing indices across graph and collection views over iterations.
- Increase in performance
Goal

• General purpose distributed frameworks for graph computations
• Comparable performances to specialized graph processing systems
Approach

• Unifies Tabular view and Graph view
• Imbibe the best of specialized systems
• Graph representation on dataflow frameworks
• Optimizations
• Develop GraphX API on top of Spark
Graph approach: Page Rank example

- Eg. Page Rank algorithm
- Graph parallel abstraction
- Define a vertex program
- Terminate when vertex programs vote to halt

```scala
def PageRank(v: Id, msgs: List[Double]) {
  // Compute the message sum
  var msgSum = 0
  for (m <- msgs) { msgSum += m }
  // Update the PageRank
  PR(v) = 0.15 + 0.85 * msgSum
  // Broadcast messages with new PR
  for (j <- OutNbrs(v)) {
    msg = PR(v) / NumLinks(v)
    send_msg(to=j, msg)
  }
  // Check for termination
  if (converged(PR(v))) voteToHalt(v)
}
```

Figure: PageRank in Pregel
Approach

- GAS (Gather Apply Scatter)

```python
# Example code

def Gather(a: Double, b: Double) = a + b

def Apply(v, msgSum) {
    PR(v) = 0.15 + 0.85 * msgSum
    if (converged(PR(v))) voteToHalt(v)
}

def Scatter(v, j) = PR(v) / NumLinks(v)
```

How to apply this in dataflow frameworks?

- Map, group-by, join dataflow operators
Representing Property graphs as Tables

Never transfer edges
GraphX API

class Graph[V, E] {
 // Constructor
 def Graph(v: Collection[(Id, V)],
 e: Collection[(Id, Id, E)])

 // Collection views
 def vertices: Collection[(Id, V)]
 def edges: Collection[(Id, Id, E)]
 def triplets: Collection[Triplet]

 // Graph-parallel computation
 def mrTriples(f: (Triplet) => M,
 sum: (M, M) => M): Collection[(Id, M)]

 // Convenience functions
 def mapV(f: (Id, V) => V): Graph[V, E]
 def mapE(f: (Id, Id, E) => E): Graph[V, E]
 def leftJoinV(v: Collection[(Id, V)],
 f: (Id, V, V) => V): Graph[V, E]
 def leftJoinE(e: Collection[(Id, Id, E)],
 f: (Id, Id, E, E) => E): Graph[V, E]
 def subgraph(vPred: (Id, V) => Boolean,
 ePred: (Triplet) => Boolean): Graph[V, E]
 def reverse: Graph[V, E]
}
Using the dataflow operators

Vertices

A
B
C
D

Triplets

A
B
C

Edges

A
B
C

Logical representation Join of vertices table on edges table
Using the dataflow operators on vertex program

Userdefined

MapFunction(\(A\rightarrow B\)) \rightarrow (B, \(\square\))

MapFunction(\(A\rightarrow C\)) \rightarrow (C, \(\square\))

MapFunction(\(B\rightarrow C\)) \rightarrow (C, \(\square\))

MapFunction(\(C\rightarrow D\)) \rightarrow (D, \(\square\))

Src. or Dst.

Reduce

(B, \(\square\))

(C, \(\square\) \oplus \(\square\))

(D, \(\square\))

Message Combiners
Optimizations

- Specialized Data Structure
- Vertex-cut Partitioning
- Remote caching
- Message Combiners
- Active Set Tracking
Implementing Optimizations

• Reusable Hash index
• Sequential scan or clustered scan based on active set (Dynamic)
• Incremental updates
• Automatic Join elimination

Additional optimizations:
• Memory based shuffle
• Batching and columnar structure
• Variable Integer encoding
Results

(a) Conn. Comp. Twitter
(b) PageRank Twitter
(c) Conn. Comp. uk-2007-05
(d) PageRank uk-2007-05
Results

Scaling for PageRank on Twitter dataset

Effect of partitioning on communication
Current Flaws

• Is not optimized for dynamic graphs.
• Requires incremental updates to routing table.
• Is not designed for streaming applications.
• Asynchronous graph computation not available. This is where Naiad will outperform.
Questions