PRETZEL: Opening the Black Box of Machine Learning Prediction Serving Systems

Presented by Qinyuan Sun

Slides are modified from first author Yunseong Lee’s slides
Outline

• Prediction Serving Systems
• Limitations of Black Box Approaches
• PRETZEL: White-box Prediction Serving System
• Evaluation
• Conclusion
Machine Learning Prediction Serving

1. Models are learned from data
2. Models are deployed and served together

Performance goal:
1) Low latency
2) High throughput
3) Minimal resource usage
ML Prediction Serving Systems: State-of-the-art

- **Assumption: models are black box**
 - Re-use the same code in training phase
 - Encapsulate all operations into a function call (e.g., `predict()`)
 - Apply *external* optimizations

- **Clipper**
- **TF Serving**
- **ML.Net**

Prediction Serving System

- **Result caching**
- **Replication**
- **ensemble**

Request Batching

- “Pretzel is tasty”
- *Text Analysis*
- *Image Recognition*
How does Models Look Like inside Boxes?

Pretzel is tasty (text) → Model → \(\text{positive} \) \(\text{vs.} \) \(\text{negative} \)

<Example: Sentiment Analysis>
How do Models Look inside Boxes?

Pretzel is tasty

<Example: Sentiment Analysis>
How do Models Look inside Boxes?

Pretzel is tasty

Tokenizer

Split text into tokens

Extract N-grams

Char Ngram

Concat

Word Ngram

Merge two vectors

Logistic Regression

Compute final score

DAG of Operators

<Example: Sentiment Analysis>
Many Models Have Similar Structures

- Many part of a model can be re-used in other models
- Customer personalization, Templates, Transfer Learning
- Identical set of operators with different parameters
Outline

• Prediction Serving Systems
• Limitations of Black Box Approaches
• PRETZEL: White-box Prediction Serving System
• Evaluation
• Conclusion
Limitation 1: Resource Waste

- Resources are isolated across Blackboxes

1. Unable to share memory space
 - Waste memory to maintain duplicate objects (despite similarities between models)

2. No coordination for CPU resources between boxes
 - Serving many models can use too many threads
Limitation 2: Inconsideration for Ops’ Characteristics

1. Operators have different performance characteristics
 • Concat materializes a vector
 • LogReg takes only 0.3% (contrary to the training phase)

2. There can be a better plan if such characteristics are considered
 • Re-use the existing vectors
 • Apply in-place update in LogReg

Latency breakdown

<table>
<thead>
<tr>
<th></th>
<th>%</th>
<th>Latency breakdown</th>
</tr>
</thead>
<tbody>
<tr>
<td>CharNgram</td>
<td>23.1</td>
<td></td>
</tr>
<tr>
<td>WordNgram</td>
<td>34.2</td>
<td></td>
</tr>
<tr>
<td>Concat</td>
<td>32.7</td>
<td></td>
</tr>
<tr>
<td>LogReg</td>
<td>9.6</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>0.3</td>
<td></td>
</tr>
</tbody>
</table>
Limitation 3: Lazy Initialization

- ML.Net initializes code and memory lazily (efficient in training phase)
- Run 250 Sentiment Analysis models 100 times
 → **cold**: first execution / **hot**: average of the rest 99
- Long-tail latency in the **cold** case
 - Code analysis, Just-in-time (JIT) compilation, memory allocation, etc
 - Difficult to provide strong Service-Level-Agreement (SLA)
Outline

• (Black-box) Prediction Serving Systems
• Limitations of Black Box Approaches
• PRETZEL: White-box Prediction Serving System
• Evaluation
• Conclusion
PRETZEL: White-box Prediction Serving

• We analyze models to optimize the internal execution

• We let models co-exist on the same runtime, sharing computation and memory resources

• We optimize models in two directions:
 1. End-to-end optimizations
 2. Multi-model optimizations
End-to-End Optimizations

Optimize the execution of *individual* models from start to end

1. [Ahead-of-time Compilation]
 Compile operators’ code in advance
 → No JIT overhead

2. [Vector pooling]
 Pre-allocate data structures
 → No memory allocation on the data path
Multi-model Optimizations

Share computation and memory **across models**

1. [Object Store]
 - Share Operators parameters/weights
 → Maintain only one copy

2. [Sub-plan Materialization]
 - Reuse intermediate results computed by other models
 → Save computation
System Components

1. Flour: Intermediate Representation

   ```
   var fContext = ...;
   var Tokenizer = ...;
   return fPrgm.Plan();
   ```

2. Oven: Compiler/Optimizer

3. Runtime: Execute inference queries

4. FrontEnd: Handle user requests
Prediction Serving with PRETZEL

1. Offline
 - Analyze structural information of models
 - Build ModelPlan for optimal execution
 - Register ModelPlan to Runtime

2. Online
 - Handle prediction requests
 - Coordinate CPU & memory resources
System Design: Offline Phase

1. Translate Model into Flour Program

```
<Model>

var fContext = new FlourContext(...)
var tTokenizer = fContext.CSV
    .FromText(fields, fieldsType, sep)
    .Tokenize();

var tCNgram = tTokenizer.CharNgram(numCNgrms, ...);
var tWNgram = tTokenizer.WordNgram(numWNgrms, ...);
var fPrgrm = tCNgram
    .Concat(tWNgram)
    .ClassifierBinaryLinear(cParams);

return fPrgrm.Plan();

<FLOUR Program>
```
System Design: Offline Phase

2. Oven optimizer/compiler build Model Plan

```
<Flour Program>
var fContext = new FlourContext(...)
var tTokenizer = fContext.CSV
    .FromText(fields, fieldsType, sep)
    .Tokenize();

var tCNgram = tTokenizer.CharNgram(numCNgrms, ...);
var tWNgram = tTokenizer.WordNgram(numWNgrms, ...);
var fPrgrm = tCNgram
    .Concat(tWNgram)
    .ClassifierBinaryLinear(cParams);
return fPrgrm.Plan();
```
System Design: Offline Phase

2. Oven optimizer/compiler build Model Plan

```csharp
var fContext = new FlourContext(...);
var tTokenizer = fContext.CSV.FromText(fields, fieldsType, sep).Tokenize();
var tCNgram = tTokenizer.CharNgram(numCNgrms, ...);
var tWNgram = tTokenizer.WordNgram(numWNgrms, ...);
var fPrgrm = tCNgram.Concat(tWNgram).
ClassifierBinaryLinear(cParams);
return fPrgrm.Plan();
```

- e.g., Dictionary, N-gram Length
- e.g., dense vs. sparse, maximum vector size

Rule-based optimizer

Push linear predictor & Remove Concat

Group ops into stages

Stage 1

Stage 2
System Design: Offline Phase

3. Model Plan is registered to Runtime

1. Store parameters & mapping between logical stages

2. Find the most efficient physical impl. using `params` & `stats`
System Design: Offline Phase

3. Model Plan is registered to Runtime

1. Store parameters & mapping between logical stages

2. Find the most efficient physical impl. using params & stats

3. Register selected physical stages to Catalog
System Design: Online Phase

1. When a prediction request arrives

2. Instantiate physical stages along with parameters

3. Execute stages using thread-pools, managed by Scheduler

4. Send result back to Client

<Model1, “Pretzel is tasty”>
Outline

• (Black-box) Prediction Serving Systems
• Limitations of Black box approaches
• PRETZEL: White-box Prediction Serving System
• Evaluation
• Conclusion
Evaluation

• Q. How PRETZEL improves performance over black-box approaches?
 • in terms of latency, memory and throughput

• 500 Models from Microsoft Machine Learning Team
 • 250 Sentiment Analysis (Memory-bound)
 • 250 Attendee Count (Compute-bound)

• System configuration
 • 16 Cores CPU, 32GB RAM
 • Windows 10, .Net core 2.0
Evaluation: Latency

- **Micro-benchmark** (No server-client communication)
 - Score 250 Sentiment Analysis models 100 times for each
 - Compare ML.Net vs. PRETZEL

<table>
<thead>
<tr>
<th></th>
<th>ML.Net</th>
<th>PRETZEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>P99 (hot)</td>
<td>0.6</td>
<td>0.2</td>
</tr>
<tr>
<td>P99 (cold)</td>
<td>8.1</td>
<td>0.8</td>
</tr>
<tr>
<td>Worst (cold)</td>
<td>280.2</td>
<td>6.2</td>
</tr>
</tbody>
</table>
Evaluation: Memory

- Measure Cumulative Memory Usage after loading 250 models
 - Attendee Count models (smaller size than Sentiment Analysis)
 - 4 settings for Comparison

<table>
<thead>
<tr>
<th>Settings</th>
<th>Shared Objects</th>
<th>Shared Runtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>ML.Net + Clipper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ML.Net</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>PRETZEL without</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ObjectStore</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>PRETZEL</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Evaluation: Throughput

- Micro-benchmark
 - Score 250 Attendee Count models 1000 times for each
 - Request 1000 queries in a batch
 - Compare ML.Net vs. PRETZEL

More results in the paper!

Close to ideal scalability

10x better
Conclusion

• PRETZEL is the first white-box prediction serving system for ML pipelines

• By using models’ structural info, we enable two types of optimizations:
 • End-to-end optimizations generate efficient execution plans for a model
 • Multi-model optimizations let models share computation and memory resources

• Our evaluation shows that PRETZEL can improve performance compared to Black-box systems (e.g., ML.Net)
 • Decrease latency and memory footprint
 • Increase resource utilization and throughput

• A lot of external optimizations used by Cipper are orthogonal to PRETZEL
Thank you!
Questions?