ASAP: Fast, Approximate Graph Pattern Mining at Scale

Anand Iyer et al. @ OSDI 2018

Presenter: Yunang Chen
ASAP Design Overview

A Swift Approximate Pattern-miner
Navigates tradeoff between result accuracy and latency
Runs on general-purpose distributed dataflow platform
Supports for generalized graph pattern mining algorithms
Graph Pattern Mining

Standard approach: Iterative expansion

Lack of scalability
- Generate exponentially large intermediate candidate sets
- Need to store + exchange them in distributed environment
Graph Pattern Mining

Standard approach: Iterative expansion

Lack of scalability
- Generate exponentially large intermediate candidate sets
- Need to store and exchange them in distributed environment

Experiments performed on a cluster of 20 machines, each having 256GB of memory.
Many pattern mining tasks do not need exact answers.

- Frequent sub-graph mining (FSM) finds the frequency of subgraphs but with an end-goal of ordering them by occurrences.

Leverage approximation for pattern mining
Approximate Pattern Mining

Previous approach: Apply the exact same algorithm on subsets of the input data, then use the statistical properties of these subsets to estimate final results.

<table>
<thead>
<tr>
<th>graph</th>
<th>edge sampling (p=0.5)</th>
<th>triangle counting</th>
<th>result</th>
</tr>
</thead>
</table>

![Graph diagram](image)

- **Result**: $e = 1$ → $e \cdot 2 = 2$
Approximate Pattern Mining

Previous approach: Apply the exact same algorithm on subsets of the input data, then use the statistical properties of these subsets to estimate final results.

- No significant speedup
- Large error rate
Approximate Pattern Mining

Neighborhood sampling:
1. Model the edges in the graph as a stream
2. Sample one edge, e_1
3. Gradually add more adjacent edges, $e_2, ..., e_k$
4. Stop when the edges form the pattern or becomes impossible to do so
5. Use the probability of sampling to bound the total number of occurrences of the pattern:
 \[P(e_1, ..., e_k) = P(e_1) \times P(e_2 | e_1) \times ... \times P(e_k | e_1, ..., e_{k-1}) \]
6. Repeat Step 1-5 multiple times
Approximate Pattern Mining

Neighborhood sampling: Triangle Counting

1. Model the edges in the graph as a stream

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)
Approximate Pattern Mining

Neighborhood sampling: Triangle Counting

2. Sample one edge

diagram

element stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)
Approximate Pattern Mining

Neighborhood sampling: Triangle Counting
3. Gradually add more adjacent edges

Edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)
Approximate Pattern Mining

Neighborhood sampling: Triangle Counting

4. Stop when the edges form the pattern or becomes impossible to do so

equation

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)
Approximate Pattern Mining

Neighborhood sampling: Triangle Counting

4. Stop when the edges form the pattern or becomes impossible to do so

edge stream: (0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)
Neighborhood sampling: Triangle Counting

5. Use the probability of sampling to bound the total number of occurrences

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)
Approximate Pattern Mining

Neighborhood sampling: Triangle Counting

6. Repeat Step 1-5 multiple times

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)
ASAP Architecture

1. `graphA.patterns("a->b->c", "100s")`
2. `graphB.fourClique("5.0%", "95.0%")`
3. Estimates: `{error: <5%, time: 95s}`
4. Estimates: `{error: <5%, time: 60s}`
5. **Error-Latency Profile (ELP) Building**
6. **Estimator Count Selection**
7. **Generalized Approximate Pattern Mining**
 - `count: 21453 +/- 14`
 - `confidence: 95%`
 - `time: 92s`

Embeddings (optional)

- Graphs stored on disk or main memory

Graph updates
Neighborhood sampling:
1. Model the edges in the graph as a stream
2. Sample one edge, $e_{\downarrow 1}$
3. Gradually add more adjacent edges, $e_{\downarrow 2}, ..., e_{\downarrow k}$
4. Stop when the edges form the pattern or becomes impossible to do so
5. Use the probability of sampling to bound the total number of occurrences of the pattern:
 \[
 P(e_{\downarrow 1}, ..., e_{\downarrow k}) = P(e_{\downarrow 1}) \times P(e_{\downarrow 2} | e_{\downarrow 1}) \times \ldots \times P(e_{\downarrow k} | e_{\downarrow 1}, ..., e_{\downarrow k-1})
 \]
6. Repeat Step 1-5 multiple times

API

- sampleVertex: () → (v, p)
- SampleEdge: () → (e, p)
- ConditionalSampleVertex: (subgraph) → (v, p)
- ConditionalSampleEdge: (subgraph) → (e, p)
- ConditionalClose: (subgraph, subgraph) → boolean
Programming API

```
(e1, p1) = sampleEdge()
(e2, p2) = conditionalSampleEdge(Subgraph(e1))
if (!e2) return 0
subgraph1 = Subgraph(e1, e2)
subgraph2 = Triangle(e1, e2) - subgraph1
if conditionalClose(subgraph1, subgraph2)
    return 1/(p1.p2)
else return 0
```

Sampling Phase: fix the vertices for a pattern

Closing Phase: waiting for remaining edges to complete the pattern
Distributed Execution

Rely on map and reduce operations

1. Partition the vertices across \(w \) workers
2. Apply estimator task on each subgraph to produce a partial count
3. Sum up partial counts
4. Adjust for underestimation by multiplying \(f(w) \)
e.g. for triangle count, \(f(w) = \frac{1}{w^2} \)

![Diagram showing map and reduce operations](image)
Rely on map and reduce operations

1. Partition the vertices across w workers
2. Apply estimator task on each subgraph to produce a partial count
3. Sum up partial counts
4. Adjust for underestimation by multiplying $f(w)$
 e.g. for triangle count, $f(w) = w^\uparrow 2$

- Patterns across partitions are ignored
- Total occurrence is reduced by $1/f(w)$
ASAP Architecture

1. graphA.patterns("a->b->c", "100s")
2. Generalized Approximate Pattern Mining
3. graphB.fourClique("5.0\%", "95.0\%")
4. Estimator Count Selection
5. Error-Latency Profile (ELP) Building
6. Estimates: {error: <5\%, time: 95s}
7. Estimates: {error: <5\%, time: 60s}

Embeddings (optional)

Graphs stored on disk or main memory

count: 21453 +/- 14
confidence: 95\%, time: 92s

Graph updates
Error-Latency Profile (ELP)

ASAP can perform tasks in two modes:
- Time budget T
- Error budget ϵ

Given a time / error bound, how many estimators should ASAP use?
Error-Latency Profile (ELP)

Running time scales **linearly** with number of estimators
Test exponentially spaced points + extrapolation to build a linear model
Error-Latency Profile (ELP)

Chernoff bound for triangle counting: \(N \leq K \times m \times \Delta / \epsilon^2 P \)

Estimate ground truth \(P \) on a small sample of the graph + scale to \(P \)
Evaluation

77x speedup with under 5% loss of accuracy for smaller graphs (0.01-30 million edges)
Evaluation

258x speedup with under 5% loss of accuracy for larger graphs
Conclusion

ASAP is the first system that does fast, scalable approximate graph pattern mining on large graphs.

ASAP outperforms Arabesque by more than a magnitude faster with a sacrifice of 5% accuracy.

ASAP scales to larger graphs whereas Arabesque fails to complete execution.
Reference

- https://www.usenix.org/sites/default/files/conference/protected-files/osdi18_slides_iyer.pdf