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ADMINISTRIVIA

- Midterm grades on Gradescope!

- Submit regrade requests through Gradescope

- Course Project: Check in by April 6%



Applications




RECOMMENDATION MODELS
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EMBEDDING TABLES

Convert categorical features to numerical features [ Geographical Location }
Example: Geographic Location to a vector 2 i kel o)

[ UserlD Embedding Table }

Extremely memory intensive, could be up to TBs

[ Product ID Embedding Table }
Have sparse access pattern




DISTRIBUTED TRAINING [TERATION
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EMBEDDING ACCESS OVERHEADS

Setup:
e DLRM model

S—

8 trainers (p3.2xlarge EC2 instances |

70 % of Ti
0% of Time V100 each node).

Batch 2048 per machine.
Criteo Terabyte Dataset

m GetEmb Backward+MLP Sync m Forward



BAGPIPE DESIGN

Oracle >
Cacher _ — Embedding Storage

Lookahead; Prefetch
determine what embeddings and
to prefetch, store in local cache
cache



EMBEDDING ACCESS PATTERNS
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LONG TAIL ACCESSES

Models are trained with a batch of examples.

Batch

Train Ex -1 - For a batch only fetch unique embeddings

Train Ex -2

i Ex 3 - Since hot embeddings are replicated, unique
embeddings are comprised of long-tail accesses.

Train Ex -4

Train Ex -5
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LOOKAHEAD ALGORITHM

Look at “L” next batches ahead of current batch to extract access
pattern of embeddings by future batches
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Cache Ke Cache Expiry

Look-ahead Value of 2, Batch size of 2
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LOOKAHEAD GUARANTEES

An embedding used by batch X, will either be available in cache, or no preceding batch
in range [x- £, X) has accessed it.

Consequently, we can prefetch embeddings used by batch x, once embeddings for
batch x- £ have been updated



CACHE SYNCHRONIZATION

At the end of each iteration, each trainer synchronizes caches

) Cache



SUMMARY

Recommendation models: Embeddings access overheads

BagPipe: Efficient distributed training
Lookahead to pre-fetch and cache embeddings

Cache synchronization across trainers



DISCUSSION

https://forms.gle/xf TAHIQ5bNENZk7m9




Consider a recommendation model trained on a graph where we use 2-hop neighbors.
What are some challenges in using BagPipe-style ideas for such a workload?
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(a) DLRM: p3.2xlarge (b) DeepFM: p3.2xlarge (c) DLRM: g5.8xlarge (d) DeepFM: g5.8xlarge



NEXT STEPS

Next class: Serverless computing

Project check-ins next week



