
CS 744: BAGPIPE

Shivaram Venkataraman
Spring 2024



ADMINISTRIVIA

- Midterm grades on Gradescope!
- Submit regrade requests through Gradescope

- Course Project: Check in by April 16th



Scalable Storage Systems

Datacenter Architecture

Resource Management

Computational Engines

Machine Learning SQL Streaming Graph

Applications



RECOMMENDATION MODELS

4

0

N

d

Clicks Categories Category 
Embeddings

Dense Neural 
Network

Examples: DLRM, DeepFM,  
Wide & Deep



Numerical 
Features

Categorical 
Features

Madiso
n, W

I

(hashed) user ID

(hashed) Product ID

User ID Embedding Table

Product ID Embedding Table

Em
be

dd
in

g A
gg

re
ga

tio
n

Fe
at

ur
e 

A
gg

re
ga

tio
n

Age - 28

Price – 20$

5



Convert categorical features to numerical features 
 Example: Geographic Location to a vector

Extremely memory intensive, could be up to TBs

Have sparse access pattern

Geographical Location 
Embedding Table

UserID Embedding Table

Product ID Embedding Table

6

EMBEDDING TABLES



DISTRIBUTED TRAINING ITERATION

7

Trainer 1

Trainer 2

Trainer 3

Parameter Server 1

Parameter Server 2

Parameter Server 3



0

20

40

60

80

100

120

140

160

Ti
m

e 
(M

S)

Embedding Sync GetEmb Backward+MLP Sync Forward

70 % of Time

Setup:
• DLRM model 
• 8 trainers (p3.2xlarge EC2 instances 1

V100 each node).
• Batch 2048 per machine.
• Criteo Terabyte Dataset

8

EMBEDDING ACCESS OVERHEADS



BAGPIPE DESIGN 

9

Oracle 
Cacher

Trainer 1

Trainer 2

Trainer 3

Embedding Storage

Lookahead; 
determine what 

to prefetch, 
cache

Prefetch 
embeddings and 

store in local cache 



10

EMBEDDING ACCESS PATTERNS



11

- For a batch only fetch unique embeddingsTrain Ex -1

Train Ex -2

Train Ex -3

Train Ex -4

Train Ex -5

Batch

Unique

Models are trained with a batch of examples.

- Since hot embeddings are replicated, unique 
embeddings are comprised of long-tail accesses.

LONG TAIl ACCESSES



12

Look at  “ℒ” next batches ahead of current batch to extract access 
pattern of embeddings by future batches 

Batch x 
+1 Batch x Batch x 

+2
Batch x 

+3
Batch x + 

ℒ

ℒ

Current 
Batch

LOOKAHEAD ALGORITHM



13

Look-ahead Value of 2, Batch size of 2

Lookahead 
Algorithm EmbID to Prefetch

Cache EMB

Expiry

Expiration 
Update 

ID 9   ID  3ID 4    ID 9
Batch 2Batch 3

Cache StateID 5    ID 3
Batch 4

Cache Key Cache Expiry

ID 3 2



14

An embedding used by batch x, will either be available in cache, or no preceding batch 
in range [x- ℒ, x) has accessed it. 

Consequently, we can prefetch embeddings used by batch x, once embeddings for 
batch x- ℒ	have been updated

LOOKAHEAD GUARANTEES



15

At the end of each iteration, each trainer synchronizes caches

Trainer1 

TrainerN

Cache

CACHE SYNCHRONIZATION



16

SUMMARY

Recommendation models: Embeddings access overheads

BagPipe: Efficient distributed training
 Lookahead to pre-fetch and cache embeddings
 Cache synchronization across trainers



DISCUSSION
https://forms.gle/xfTAHiQ5bNENZk7m9



Consider a recommendation model trained on a graph where we use 2-hop neighbors. 
What are some challenges in using BagPipe-style ideas for such a workload?





NEXT STEPS

Next class: Serverless computing
Project check-ins next week


