GS 744 BAGPIPE

Shivaram Venkataraman
Spring 2024

ADMINISTRIVIA

- Midterm grades on Gradescope!

- Submit regrade requests through Gradescope

- Course Project: Check in by April 6%

Applications

RECOMMENDATION MODELS

@ Examples: DLRM, DeepFM,
=] Wide & Deep

S

E \' Dense Neural

Network

Clicks Categories Category
Embeddings

Numerical Asge - 28

v

Features Price — 20$

|

Location Embedding Table
Location Vector
_____ Madison,WI {0.16,11,, 1.2}
Sk
e"l Koblenz,DE |{0.9, 14,, 2.9}
Detroit,MI | {1.17, 3.1,,, 0.14}

Categorical
Features (hashed) user ID L User ID Embedding Table

(h Iheg) p Product ID Embedding Table

Embedding Aggregation

T T

roduq. D

[

v

Feature Aggregation

EMBEDDING TABLES

Convert categorical features to numerical features [Geographical Location }
Example: Geographic Location to a vector 2 i kel o)

[UserlD Embedding Table }

Extremely memory intensive, could be up to TBs

[Product ID Embedding Table }
Have sparse access pattern

DISTRIBUTED TRAINING [TERATION

Time (MS)

160

140

120

100

80

60

40

20

0

®m Embedding Sync

EMBEDDING ACCESS OVERHEADS

Setup:
e DLRM model

S—

8 trainers (p3.2xlarge EC2 instances |

70 % of Ti
0% of Time V100 each node).

Batch 2048 per machine.
Criteo Terabyte Dataset

m GetEmb Backward+MLP Sync m Forward

BAGPIPE DESIGN

Oracle >
Cacher _ — Embedding Storage

Lookahead; Prefetch
determine what embeddings and
to prefetch, store in local cache
cache

EMBEDDING ACCESS PATTERNS

CDF of total accesses

CDF of access across datasets

1.00 - -
0.95 -
0.90 1 .
0.85 9 I
0.80 - I —— Criteo Terabyte
Criteo Kaggle
I Avazu
0.75 et ——rrrrrry —————— e ; L
102 10-1 10° 10! 102

Percent of most frequent embeddings

10

LONG TAIL ACCESSES

Models are trained with a batch of examples.

Batch

Train Ex -1 - For a batch only fetch unique embeddings

Train Ex -2

i Ex 3 - Since hot embeddings are replicated, unique
embeddings are comprised of long-tail accesses.

Train Ex -4

Train Ex -5

L)

fss==s)

11

LOOKAHEAD ALGORITHM

Look at “L” next batches ahead of current batch to extract access
pattern of embeddings by future batches

Current
Batch

Batch x + Batch x Batch x Batch x Batch x
L > & ¢ +3 +2 +1
\ J
|

L

Cache Ke Cache Expiry

Look-ahead Value of 2, Batch size of 2

Batch 4 Batch 3 Batch 2

Cache State

EmbID to Prefetch

Cache EMB

-

Update

Expiry

»
>

13

LOOKAHEAD GUARANTEES

An embedding used by batch X, will either be available in cache, or no preceding batch
in range [x- £, X) has accessed it.

Consequently, we can prefetch embeddings used by batch x, once embeddings for
batch x- £ have been updated

CACHE SYNCHRONIZATION

At the end of each iteration, each trainer synchronizes caches

) Cache

SUMMARY

Recommendation models: Embeddings access overheads

BagPipe: Efficient distributed training
Lookahead to pre-fetch and cache embeddings

Cache synchronization across trainers

DISCUSSION

https://forms.gle/xf TAHIQ5bNENZk7m9

Consider a recommendation model trained on a graph where we use 2-hop neighbors.
What are some challenges in using BagPipe-style ideas for such a workload?

I Forward-Bagpipe HEE Forward-Ideal I Backward+MLPsync-Bagpipe [Backward+MLPsync-Ideal Get-Embedding Bagpipe [Get-Embedding Ideal I Cache Synchronization

60

30

5
2
3

=}
S

’E‘ 50 @ ’E‘ 5 I~
= Eum = Ew
Q [o Q
gw g g2 g
= - | - = 80
B 150 B [
g % g § s g 60
=1 g = g
8 £ 10 5 &
8 8 2 2
— — — — 40
é 10 E 0 C‘E E
5 20
. B . 0 .
Bagpipe Ideal Bagpipe Ideal Bagpipe Ideal Bagpipe Ideal

(a) DLRM: p3.2xlarge (b) DeepFM: p3.2xlarge (c) DLRM: g5.8xlarge (d) DeepFM: g5.8xlarge

NEXT STEPS

Next class: Serverless computing

Project check-ins next week

