
CS 744: DATAFLOW

Shivaram Venkataraman
Spring 2024

ADMINISTRIVIA

Grading In Progress
- Course project proposal
- Assignment 2
- Midterm

MID-SEMESTER FEEDBACK
“…instead of having everyone submit full discussion answers regardless of what group they're in, maybe
just have a single check box on the form….”

“I hope there can be more details about the diagrams in discussion and exams….”
….

“… I found midterm exercises were more tricky/challenging …”
“… hard time in the midterm exam…”

“Its an early morning class”
“The morning timings of the class”

“I want reading groups to talk and understand the paper better.”
“… If we had paper reading groups like Distributed Systems course…”

Scalable Storage Systems

Datacenter Architecture

Resource Management

Computational Engines

Machine Learning SQL Streaming Graph

Applications

DATAFLOW MODEL (?)

MOTIVATION

Streaming Video Provider
 - How much to bill each advertiser ?
 - Need per-user, per-video viewing sessions
 - Handle out of order data

 Goals
 - Easy to program
 - Balance correctness, latency and cost

APPROACH

Separate user API from execution

Decompose queries into
 - What is being computed
 - Where in time is it computed
 - When is it materialized
 - How does it relate to earlier results

STREAMING VS. BATCH
Streaming Batch

TIMESTAMPS

Event time:

 Processing time:

WINDOWING

WATERMARK or SKEW

System has
processed all
events up to
12:02:30

API

ParDo:

GroupByKey:

Windowing
 AssignWindow

 MergeWindow

EXAMPLE

GroupByKey

TRIGGERS AND INCREMENTAL PROCESSING

Windowing: where in event time are data grouped
Triggering: when in processing time are groups emitted

Strategies
 Discarding
 Accumulating
 Accumulating & Retracting

RUNNING EXAMPLE
PCollection<KV<String, Integer>> input = IO.read(...);
PCollection<KV<String, Integer>> output =
 input.apply(Sum.integersPerKey());

GLOBAL WINDOWS, ACCUMULATE
PCollection<KV<String, Integer>> output = input
 .apply(Window.trigger(Repeat(AtPeriod(1, MINUTE)))
 .accumulating())
 .apply(Sum.integersPerKey());

GLOBAL WINDOWS, COUNT, DISCARDING
PCollection<KV<String, Integer>> output = input
 .apply(Window.trigger(Repeat(AtCount(2)))
 .discarding())
 .apply(Sum.integersPerKey());

FiXED WINDOWS, MICRO BATCH
PCollection<KV<String, Integer>> output = input
 .apply(Window.into(FixedWindows.of(2, MINUTES))
 .trigger(Repeat(AtWatermark())))
 .accumulating())

SUMMARY/LESSONS

Design for unbounded data: Don’t rely on completeness
Be flexible, diverse use cases

- Billing
- Recommendation
- Anomaly detection

Windowing, Trigger API to simplify programming on unbounded data

DISCUSSION
https://forms.gle/TB5kz2cH3uYc6rjv6

Consider you are implementing a micro-batch streaming API on top of Apache
Spark. What are some of the bottlenecks/challenges you might have in building
such a system?

NEXT STEPS

Next class: Apache Flink

