CS 744: DRF

Shivaram Venkataraman Spring 2024

ADMINISTRIVIA

- Assignment 2 done!
- Course Project
 - Form groups and submit project bids by tonight!
 - Assigned projects by March I
 - Introductions due March 8

SETTING: FAIR SHARING

SLOT-BASED MODEL

Slot: Fixed quantity of CPU and memory

Example: Hadoop MapReduce Mapper: 2 CPU and I GB Reducer: I CPU and 2 GB

Allocate in units of slots

MOTIVATION: MULTI RESOURCES

DRF: MODEL

Users have a demand vector

<2, 3, I> means user's task needs 2 RI, 3 R2, I R3

Resources given in multiples of demand vector i.e., users might get <4,6,2>

PROPERTIES

PROPERTIES

Sharing Incentive

User is no worse off than a cluster with

I/n resources

Strategy Proof

User should not benefit by lying about demands

Pareto Efficiency

Not possible to increase one user without decreasing another Envy free

User should not desire the allocation of another user

DRF: APPROACH

Dominant Resource

Dominant Share

Resource user has the biggest share of

Fraction of the dominant resource user is allocated

Total: <10 CPU, 4 GB> User 1: <1 CPU, 1 GB>

Dominant resource is memory

E.g., for User I this is 25% or 1/4

DRF: APPROACH

Equalize the dominant share of users

	User	Allocation	Dominant Share
Total: <9 CPU, 18 GB>		<0 CPU, 0 GB>	0
User1: <1 CPU, 4 GB>	UserI		
dom res: <mark>mem</mark> User2: <3 CPU, I GB> dom res: <mark>CPU</mark>		<0 CPU, 0 GB>	0
	User2		

DRF: APPROACH

DRF ALGORITHM

Whenever there are available resources: Schedule a task to the user with smallest dominant share

DRF ALGORITHM

Algorithm 1 DRF pseudo-code

 $\begin{array}{ll} R = \langle r_1, \cdots, r_m \rangle & \triangleright \text{ total resource capacities} \\ C = \langle c_1, \cdots, c_m \rangle & \triangleright \text{ consumed resources, initially 0} \\ s_i \ (i = 1..n) & \triangleright \text{ user } i \text{'s dominant shares, initially 0} \\ U_i = \langle u_{i,1}, \cdots, u_{i,m} \rangle \ (i = 1..n) & \triangleright \text{ resources given to} \\ & \text{ user } i, \text{ initially 0} \end{array}$

pick user *i* with lowest dominant share s_i $D_i \leftarrow$ demand of user *i*'s next task **if** $C + D_i \leq R$ **then**

 $C = C + D_i \qquad \triangleright \text{ update consumed vector} \\ U_i = U_i + D_i \qquad \triangleright \text{ update } i\text{'s allocation vector} \\ s_i = \max_{j=1}^m \{u_{i,j}/r_j\}$ else

return ▷ the cluster is full end if

COMPARISON: ASSET FAIRNESS

Asset Fairness: Equalize each user's sum of resource shares

Consider total of 70 CPUs, 70 GB RAM UI needs <2 CPU, 2 GB RAM> per task U2 needs <1 CPU, 2 GB RAM> per task

Asset Fair Allocation: UI: I5 tasks: 30 CPU, 30 GB (Sum = 60) U2: 20 tasks: 20 CPU, 40 GB (Sum = 60)

COMPARISON: ASSET FAIRNESS

Asset Fairness: Equalize each user's sum of resource shares Violates Sharing Incentive

Consider total of 70 CPUs, 70 GB RAM UI needs <2 CPU, 2 GB RAM> per task U2 needs <1 CPU, 2 GB RAM> per task

Sharing incentive? Half of the cluster is 35 CPU, 35 GB RAM UI: U2:

COMPARISON: CEEI

CEEI: Competitive Equilibrium from Equal Incomes

- Each user receives initially 1/n of every resource,
- Subsequently, each user can trade resources with other users in a perfectly competitive market
- Nash solution: Maximize product of utilities across users

COMPARISON: CEEI

Total: <9 CPU, 18 GB> User1: <1 CPU, 4 GB> User2: <3 CPU, 1 GB>

 $\max(x \cdot y)$
subject to

CEEI: STRATEGY PROOFNESS

Total: <9 CPU, 18 GB>

User2 Before: CEEI: 55% CPU, 9% mem

Total: <9 CPU, 18 GB> User1: <1 CPU, 4 GB> User2: <3 CPU, 1 GB> User2: <3 CPU, 2 GB>

COMPARISON

	Allocation Policy		
Property	Asset	CEEI	DRF
Sharing Incentive		\checkmark	\checkmark
Strategy-proofness	\checkmark		\checkmark
Envy-freeness	\checkmark	\checkmark	\checkmark
Pareto efficiency	\checkmark	\checkmark	\checkmark
Single Resource Fairness	\checkmark	\checkmark	\checkmark
Bottleneck Fairness		\checkmark	\checkmark
Population Monotonicity	\checkmark		\checkmark
Resource Monotonicity			

Table 2: Properties of Asset Fairness, CEEI and DRF.

SUMMARY

DRF: Dominant Resource Fairness Allocation policy for scheduling Provides multi-resource fairness Ensures sharing incentive, strategy proofness

DISCUSSION

https://forms.gle/75faGZ4quQgWSYRQ8

What could be one workload / cluster scenario where DRF implemented on Mesos will NOT be optimal?

NEXT STEPS

Next class: Machine Learning Schedulers