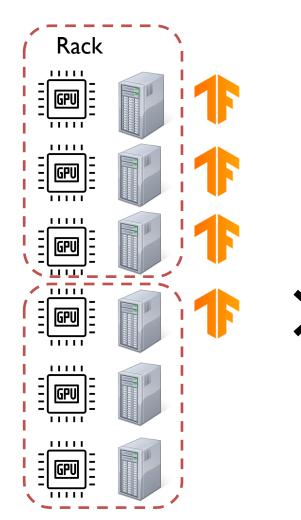

CS 744: GAVEL

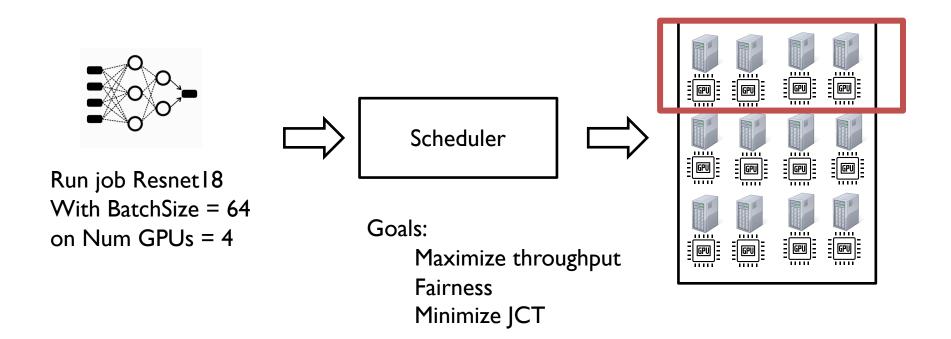

Shivaram Venkataraman Spring 2024

ADMINISTRIVIA

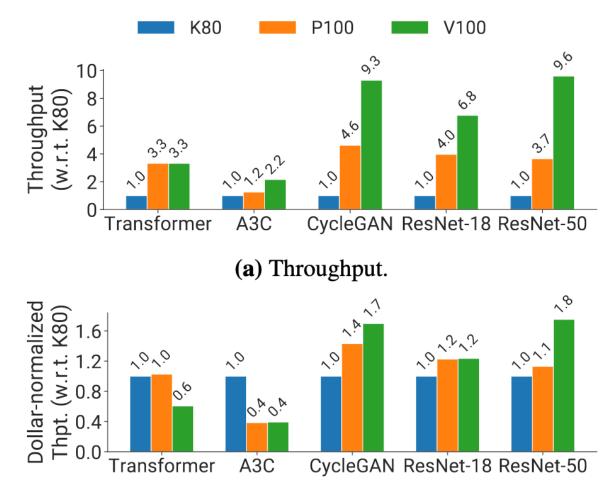
- Course project assignments
 - Emails will go out end of this week (March I)
 - Introductions due March 8th
- Midterm Exam
 - In class on March 14th
 - Includes everything from beginning to the end of scheduling (including INFaaS)

MACHINE LEARNING: TRAINING

WORKLOAD CHARACTERISTICS


Long running tasks

Gang scheduling


Heterogeneity?

Created by Phonlaphat Thongsriphong from Noun Project

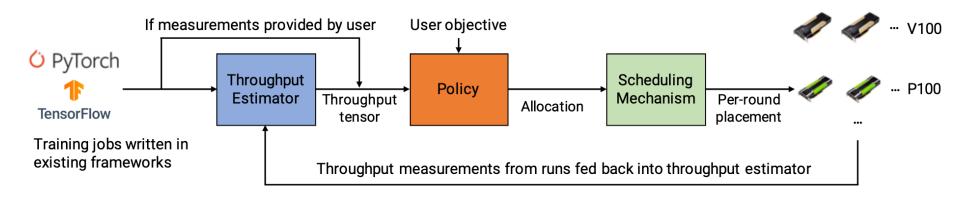
DL SCHEDULER INTERFACE

. . .

MOTIVATION: HETEROGENEITY

(b) Dollar-normalized.

ADDITIONAL GOALS


- Support a wide range of objectives
 - Minimize makespan
 - Average JCT

. . .

Fairness (Sharing incentive)

- Placement sensitivity/Co-location

GAVEL: SYSTEM DESIGN

SCHEDULING POLICY: OPTIMIZATION PROBLEM

(1)

(2)

(3)

$$\begin{aligned} \text{Maximize}_X \sum_{m \in \text{jobs}} \text{throughput}(m, X) \\ \text{throughput}(m, X) &= \sum_{\substack{j \in \\ \text{accelerator types}}} T_{mj} \cdot X_{mj} \\ 0 &\leq X_{mj} \leq 1 \qquad \forall (m, j) \\ \sum_j X_{mj} \leq 1 \qquad \forall m \\ \Sigma_m X_{mj} : \text{scale factor}_m \leq \text{num workers}_j \quad \forall j \end{aligned}$$

	V100	<i>P</i> 100	K80	
$X^{\text{example}} =$	/ 0.6	0.4	0.0 \	job 0
	0.2	0.6	0.2	job 1
	0.2	0.0	0.8/	job 2

POLICY: MAX-MIN FAIRNESS

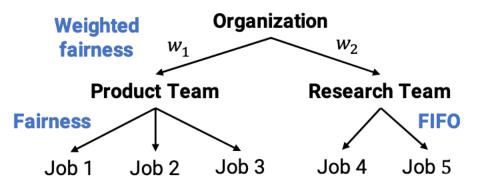
Classic: Weighted max-min fairness based on accelerator hours consumed

Maximize_X min
$$\frac{1}{w_m} X_m$$

Gavel: Use weighted normalized effective throughputs

$$\text{Maximize}_X \min_m \frac{1}{w_m} \frac{\text{throughput}(m, X)}{\text{throughput}(m, X_m^{\text{equal}})}$$

throughput
$$(m, X) = \sum_{\substack{j \in \\ \text{accelerator types}}} T_{mj} \cdot X_{mj}$$


EXAMPLE

$$T = \begin{pmatrix} V100 & K80 \\ 40.0 & 10.0 \\ 12.0 & 4.0 \\ 100.0 & 50.0 \end{pmatrix} \begin{array}{c} \text{job } 0 \\ \text{job } 1 \\ \text{job } 2 \end{array}$$

$X^{\text{het.}} = \begin{pmatrix} V100 & K80 \\ 0.45 & 0.0 \\ 0.45 & 0.09 \\ 0.09 & 0.91 \end{pmatrix} \begin{array}{c} \text{job } 0 \\ \text{job } 1 \\ \text{job } 2 \end{array}$

 $X^{\text{hom.}}$

HIERARCHICAL POLICIES

Share physical cluster among sub-organizations Different policies at levels of hierarchy

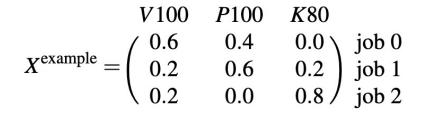
Solve an LP problem across the organization Weights constrained by policy within entity (e.g., w4 = 1 and w5 = 0)

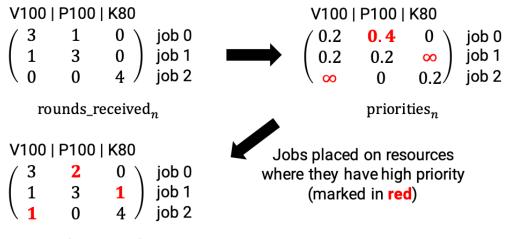
Use water-filling to remove bottlenecked jobs

MECHANISM: ROUND-BASED SCHEDULING

Schedule in "rounds" – every round is ~6 mins

In every round:


Consider a list of schedulable jobs and X^{opt} (from policy)


Decide which jobs are chosen to run in this round Track time spent by job m on accelerator type j

Give high priority to jobs which are farthest from X^{opt}

Greedy policy that converges across rounds

MECHANISM: PRIORITIES

 $\mathsf{rounds_received}_{n+1}$

SUMMARY

DL training workloads properties Clusters with mix of accelerators


Gavel: Framework to capture many scheduling goals Mechanism based on round-based assignments

DISCUSSION

https://forms.gle/pYnFErGi54HEHcuj7

What are some similarities or differences between Mesos/DRF and DL schedulers like Gavel?

NEXT STEPS

Next Class: INFaaS

Course Project Introductions!