
CS 744: GOOGLE FILE SYSTEM

Shivaram Venkataraman
Spring 2024

welcome back !

ANNOUNCEMENTS

- Assignment 1 out today
- Group submission form
- No class on Thursday!

- Anybody on the waitlist?

OUTLINE

1. Brief history
2. GFS
3. Discussion
4. What happened next?

HISTORY OF DISTRIBUTED FILE SYSTEMS

SUN NFS

File
Server

Client

Client

Client

Client

RPC

RPC

RPC

RPC
Local FS

/dev/sda1 on /
/dev/sdb1 on /backups

NFS on /home

/

backups home

bak1 bak2 bak3

etc bin

tyler

537

p1 p2

.bashrc

CACHING

Client cache records time when data block was fetched (t1)
Before using data block, client does a STAT request to server

- get’s last modified timestamp for this file (t2) (not block…)
- compare to cache timestamp
- refetch data block if changed since timestamp (t2 > t1)

Local FS

Server Client 2

NFS
cache: A t1t2

lots of stat

traffic read

I write

stat
t2 > t 1

Client
2

C\t2
- read then

updates
read re-fetch

hello C

c ↑ the Block

↳ at
z

->
=

->

which
read

ANDREW FILE SYSTEM

- Design for scale

- Whole-file caching

- Callbacks from server

WORKLOAD PATTERNS (1991)
->

machines in

College
most

of

read agthe - campus

file
write small I ~ 4kware

-

OceanSTORE/PAST

Wide area storage systems

Fully decentralized

Built on distributed hash
tables (DHT)

across
the internet

-

-

no single
- central

--

server

->

↳ Bit Torrent

GFS: WHY ?

GFS: WHY ?

Components with failures Files are huge !

Applications are different

GFS: WORKLOAD ASSUMPTIONS

“Modest” number of large files

Two kinds of reads: Large Streaming and small random

Writes: Many large, sequential writes. Few random

High bandwidth more important than low latency

GFS: DESIGN

- Single Master for
metadata

- Chunkservers for
storing data

- No POSIX API !
- No Caches!

CHUNK SIZE TRADE-OFFS

Client à Master

Client à Chunkserver

Metadata

GFS: REPLICATION

- 3-way replication to handle faults
- Primary replica for each chunk
- Chain replication (consistency)

- Decouple data, control flow
- Dataflow: Pipelining, network-

aware

RECORD APPENDS
Write Client specifies the offset
Record Append GFS chooses offset

Consistency
 At-least once
 Atomic

MASTER OPERATIONS

- No “directory” inode! Simplifies locking
- Replica placement considerations

- Implementing deletes

FAULT TOLERANCE

- Chunk replication with 3 replicas
- Master

- Replication of log, checkpoint
- Shadow master

- Data integrity using checksum blocks

DISCUSSION

https://forms.gle/yPwbLvjjqKHevZ4k6

What happens with a faster network (125MB/s) but same disks (100 MB/s)?

WHAT HAPPENED NEXT

Keynote at PDSW-DISCS 2017: 2nd Joint International Workshop On Parallel Data Storage &
Data Intensive Scalable Computing Systems

GFS EVOLUTION
Motivation:

- GFS Master
 One machine not large enough for large FS
 Single bottleneck for metadata operations (data path offloaded)
 Fault tolerant, but not HA

- Lack of predictable performance
 No guarantees of latency
 (GFS problems: one slow chunkserver -> slow writes)

GFS EVOLUTION

GFS master replaced by Colossus
Metadata stored in BigTable

Recursive structure ? If Metadata is ~1/10000 the size of data
100 PB data → 10 TB metadata
10TB metadata → 1GB metametadata
1GB metametadata → 100KB meta...

GFS EVOLUTION

Need for Efficient Storage

Rebalance old, cold data

Distributes newly written data evenly
across disk

Manage both SSD and hard disks

NEXT STEPS

- Assignment 1 out tonight!
- No class on Thursday
- Next up: MapReduce, Spark

