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welcome back !



ANNOUNCEMENTS

- Assignment 1 out today
- Group submission form
- No class on Thursday!

- Anybody on the waitlist?



OUTLINE

1. Brief history
2. GFS
3. Discussion
4. What happened next?



HISTORY OF DISTRIBUTED FILE SYSTEMS
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CACHING

Client cache records time when data block was fetched (t1)
Before using data block, client does a STAT request to server

- get’s last modified timestamp for this file (t2) (not block…)
- compare to cache timestamp
- refetch data block if changed since timestamp (t2 > t1)
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ANDREW FILE SYSTEM

- Design for scale

- Whole-file caching

- Callbacks from server
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OceanSTORE/PAST

Wide area storage systems

Fully decentralized
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GFS: WHY ?



GFS: WHY ?

Components with failures Files are huge !

Applications are different 



GFS: WORKLOAD ASSUMPTIONS

“Modest” number of large files

Two kinds of reads: Large Streaming and small random

Writes: Many large, sequential writes. Few random

High bandwidth more important than low latency



GFS: DESIGN

- Single Master for 
metadata

- Chunkservers for 
storing data

- No POSIX API !       
- No Caches!



CHUNK SIZE TRADE-OFFS

Client à Master

Client à Chunkserver

Metadata



GFS: REPLICATION

- 3-way replication to handle faults
- Primary replica for each chunk
- Chain replication (consistency)

- Decouple data, control flow
- Dataflow: Pipelining, network-

aware



RECORD APPENDS
Write    Client specifies the offset
Record Append  GFS chooses offset

Consistency
 At-least once
 Atomic



MASTER OPERATIONS

- No “directory” inode! Simplifies locking
- Replica placement considerations

- Implementing deletes 



FAULT TOLERANCE

- Chunk replication with 3 replicas
- Master

- Replication of log, checkpoint
- Shadow master

- Data integrity using checksum blocks



DISCUSSION

https://forms.gle/yPwbLvjjqKHevZ4k6



What happens with a faster network (125MB/s) but same disks (100 MB/s)?





WHAT HAPPENED NEXT



Keynote at PDSW-DISCS 2017: 2nd Joint International Workshop On Parallel Data Storage & 
Data Intensive Scalable Computing Systems



GFS EVOLUTION
Motivation:

- GFS Master
  One machine not large enough for large FS
  Single bottleneck for metadata operations (data path offloaded)
  Fault tolerant, but not HA

- Lack of predictable performance
  No guarantees of latency
  (GFS problems: one slow chunkserver -> slow writes)



GFS EVOLUTION

GFS master replaced by Colossus
Metadata stored in BigTable

Recursive structure ?  If Metadata is ~1/10000 the size of data
100 PB data → 10 TB metadata
10TB metadata → 1GB metametadata
1GB metametadata → 100KB meta... 



GFS EVOLUTION

Need for Efficient Storage

Rebalance old, cold data

Distributes newly written data evenly 
across disk

Manage both SSD and hard disks



NEXT STEPS

- Assignment 1 out tonight!
- No class on Thursday
- Next up: MapReduce, Spark


