GS 744: GOOGLE FILE SYSTEM

Shivaram Venkataraman
Spring 2024

ANNOUNCEMENTS

- Assignment | out today

- Group submission form

- No class on Thursday!

- Anybody on the waitlist?

A W N -

Brief history

GFS

Discussion

What happened next?

QUTLINE

HISTORY OF DISTRIBUTED FILE SYSTEMS

SUNNFS

RPC RPC
H/-
< -

—

/dev/sdal on /

/dev/sdbl on /backups
NFS on /home

CACHING

Server Client 2

Local FS N
t2 cache: A

Client cache records time when data block was fetched (tl)
Before using data block, client does a STAT request to server
- get’s last modified timestamp for this file (t2) (not block...)
- compare to cache timestamp

- refetch data block if changed since timestamp (t2 > tl)

tl

ANDREW FILE SYSTEM

Architecture

Workstations Servers

BUserve“”S\
— Vice
- Design for scale [_UNiXkemel]

=

| UNIXkemel |
BuserVenus\ % g §
program

- Whole-file caching “Ng"‘e' |

Vice

3User Venus=._
rogram | UNIX kemel I
UNIX kernel |

== =R—N—

- Callbacks from server

WORKLOAD PATTERNS (1991)

100

eseene Trace 1
. - = = Trace
./ e===+ Trace3

ws=es Trace 4
Trace 5
. — — = Trace 6
r©r - =esss Trace 7
—-—- Trace 8

- & e
Ll ¢

& MR v aRE AR v
Run Length (bytes)

Mary G. Baker, John H. Hartman, Michael D. Kupfer, Ken W. Shirriff, and John K. Qusterhout

OCEANSTORE/PAST

Wide area storage systems

. (\
Fully decentralized o

Built on distributed hash
tables (DHT)

GFS: WHY ?

Components with failures Files are huge !

GFS: WHY ?

Applications are different

GFS: WORKLOAD ASSUMPTIONS

“Modest” number of large files
Two kinds of reads: Large Streaming and small random
Writes: Many large, sequential writes. Few random

High bandwidth more important than low latency

- Single Master for
metadata

- Chunkservers for
storing data

- No POSIX API !
- No Caches!

GFS: DESIGN

Application (file name, chunk index)

GFS master

-

GFS client |

(chunk handle,
chunk locations)

(chunk handle, byte range)

File namespace ,~

'
1
’

- /foo/bar

chunk 2ef0

Y

Instructions to chunkserver

Chunkserver state

Y

Lege

- GFS chunkserver

chunk data

GFS chunkserver

Linux file system

Linux file system

SIS

55 -

Figure 1: GFS Architecture

CHUNK SIZE TRADE-OFFS

Client 2 Master
Client 2 Chunkserver

Metadata

Client

step 1

GFS: REPLICATION

Y

13

Secondary
Replica A

l

Primary
Replica

-
-

l

Secondary
Replica B

Master

Legend:

Control

))t

3-way replication to handle faults
Primary replica for each chunk

Chain replication (consistency)

Decouple data, control flow

Dataflow: Pipelining, network-
aware

RECORD APPENDS

Write Client specifies the offset
Record Append GFS chooses offset

Consistency
At-least once
Atomic

MASTER OPERATIONS

- No “directory” inode! Simplifies locking

- Replica placement considerations

- Implementing deletes

FAULT TOLERANCE

- Chunk replication with 3 replicas

- Master

- Replication of log, checkpoint

- Shadow master

- Data integrity using checksum blocks

DISCUSSION

https://forms.gle/yPwbLvjjgKHevZ4ké6

What happens with a faster network (125MB/s) but same disks (100 MB/s)?

. Network limit 60- Network limit Network limit
100_ -~ ﬁ 10"
z = =
4 a =
= 2 40- P
g R
g 301 Aggregate read rate -'l‘:-’ g 7
Y]
o 20" s (=¥
= Aggregate write rate < Aggregate append rate
0 T T 1 0 T T T 0 T T T
0 5 .10 15 0 5 10 15 0 5 10 15
Number of clients N Number of clients N Number of clients N

(a) Reads (b) Writes (c) Record appends

Operation Read Write Record Append Operation Read Write Record Append
Cluster X Y X Y X Y Cluster X Y X Y X Y
0K 0.4 2.6 0 0 0 0 1B..1K < I<l | < 1<.1]|<.1 < .1
1B..1K 0.1 4.1 6.6 4.9 0.2 9.2 1K..8K 13.8 39 | <.1<.1|<.1 0.1
1K..8K 65.2 38.5 0.4 1.0 | 18.9 15.2 8K..64K 11.4 9.3 2.4 5.9 2.3 0.3
8K..64K 29.9 45.1 | 17.8 43.0 | 78.0 2.8 64K..128K 0.3 0.7 0.3 0.3 | 22.7 1.2
64K..128K 0.1 0.7 23 19| <.1 4.3 128K..256K 0.8 06| 165 0.2 | < .1 5.8
128K..256K 0.2 03]316 04 | <.1 10.6 256K..512K 1.4 0.3 34 77| < .1 38.4
256K..512K 0.1 0.1 42 7.7 | < .1 31.2 512K..1M 65.9 55.1 | 74.1 58.0 1 46.8
512K..1M 3.9 6.9 | 35.5 28.7 2.2 25.5 1M..inf 6.4 30.1 3.3 28.0 | 53.9 7.4
1M..inf 0.1 1.8 1.5 12.3 0.7 2.2
Table 5: Bytes Transferred Breakdown by Opera-
Table 4: Operations Breakdown by Size (%). For tion Size (%). For reads, the size is the amount of data
reads, the size is the amount of data actually read and trans- actually read and transferred, rather than the amount re-
ferred, rather than the amount requested. quested. The two may differ if the read attempts to read

beyond end of file, which by design is not uncommon in our
workloads.

WHAT HAPPENED NEXT

O
Cluster-Level Storage @ Google

How we use Colossus to improve storage efficiency

Denis Serenyi
Senior Staff Software Engineer

dserenyi@google.com

Keynote at PDSW-DISCS 2017: 2nd Joint International Workshop On Parallel Data Storage &

Data Intensive Scalable Computing Systems

GFS EVOLUTION

Motivation:

- GFS Master
One machine not large enough for large FS
Single bottleneck for metadata operations (data path offloaded)
Fault tolerant, but not HA

- Lack of predictable performance
No guarantees of latency
(GFS problems: one slow chunkserver -> slow writes)

GFS EVOLUTION

GFS master replaced by Colossus
Metadata stored in BigTable

Recursive structure ? If Metadata is ~1/10000 the size of data
|00 PB data — 10 TB metadata

|O0TB metadata — | GB metametadata

| GB metametadata — |00KB meta...

GFS EVOLUTION

Need for Efficient Storage
Rebalance old, cold data

Distributes newly written data evenly cold data
across disk

Manage both SSD and hard disks hot data

big disk

NEXT STEPS

- Assignment | out tonight!

- No class on Thursday

- Next up: MapReduce, Spark

