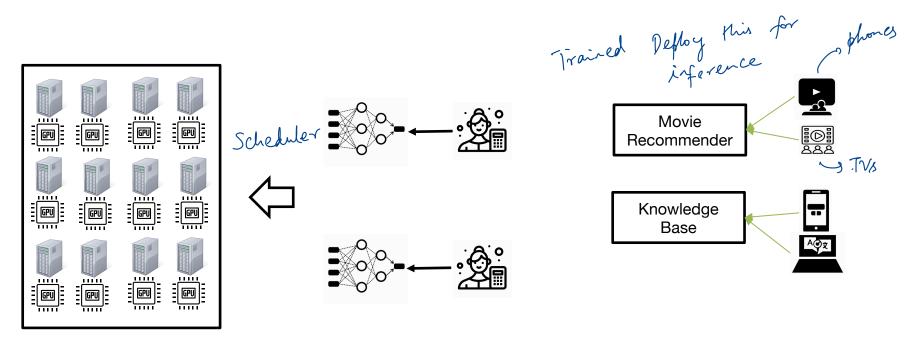
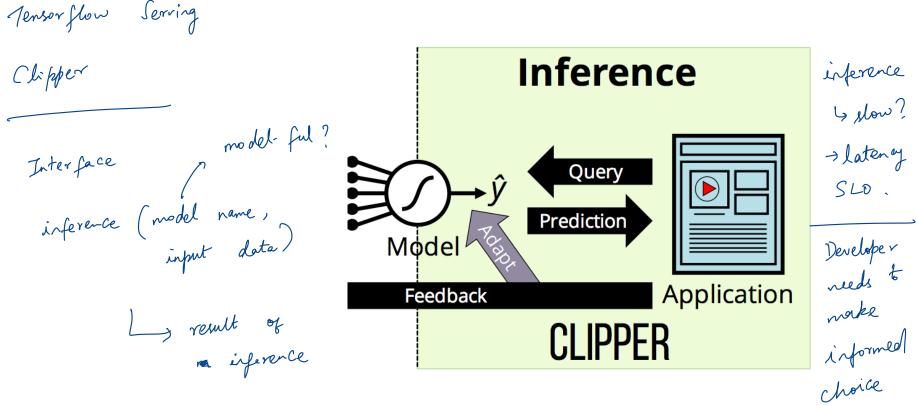
Good morning!

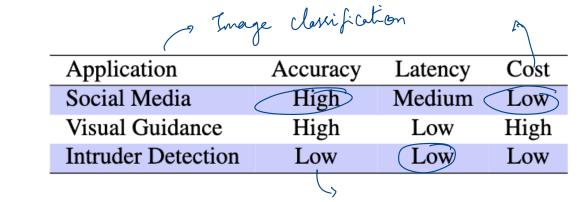

CS 744: INFAAS

Shivaram Venkataraman Spring 2024

ADMINISTRIVIA

- Arrignment 1 -> office hours
- Course project
 - Introductions due March 8th \rightarrow template ~ 2 page
- Midterm Exam
 - In class on March 14th -> Next Thursday
 - Includes everything from beginning to the end of scheduling (including INFaaS)
 - Sample papers on Piazza


MACHINE LEARNING: TRAINING, INFERENCE


TRAINING

INFERENCE

MI INFERENCE: MODEL-FUL?

MOTIVATION: MODEL VARIANTS!

Resnet - 18, Resnet - 50, Efficient Net

batch the etc. CPU/GPU Scale

Heterogeneous environments

Diverse model variants

Diverse Applications

-> App requirements are diverse

Model Variante

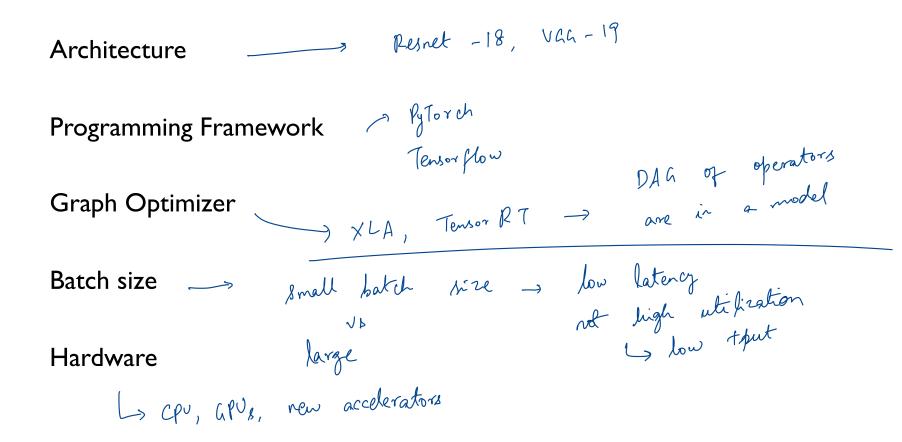
	Variant	(hardwar	e, fra	amework)	Lat. (ms)	Req/s	Cost (\$/s)
	A (4 CPUs, TensorFlow)				200	5//	1
\rightarrow	B (1 Inf	erentia c	ore, l	Neuron)	20	100,	3
	<u>C</u> (1 V100 GPU, TensorRT)				15	800	16
	A instance of B. Cost \$3. 1 instance of C. Cost \$16				2 justo-ces	y A. C	ost \$2]s
	QPS	SLO (r	ns)	#Var. A	#Var. B	#Var. C	Cost (\$/s)
	10	300		2	0	0	\$2
	10	50		0	1	0	
	1000	300		0	2	1	
La requirements Assignment La What we want to guto mate							e want to guto mate

INFAAS: MODEL-LESS SERVING

Insight: Opportunity to pick right model for a query

User specifies performance, cost, or accuracy requirements System manages model variants at runtime

-> change the API being used to that system picks model variant!

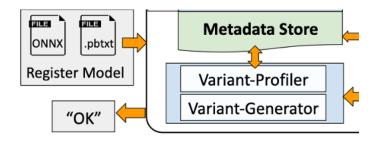

INFAAS: OUTLINE

Model Variants

API Design & Architecture

Selecting, Scaling Model variants

MODEL VARIANT


model weights ~ appID 1 register_model("ResNet50", ResNet50.pt, valSet, detectFaceApp) compute the accaracy of model variants 2 register_model("MobileNet", MobileNet.pt, valSet, detectFaceApp) forward Query: 1 INFaaS Controller 2 Worker 😗 that are auto-generated Dispatcher **Recognize** face Front-End Dispatcher 拱 Executor in 200ms, >70% Model-Variant accuracy Selection Policy Model-Autoscaler new worker and Result: 4 VM-Autoscaler Model-Variant Selection Policy "Homer Simpson" Model Registrar Monitoring Daemon pat worker hardles requests R FILE FILE **Metadata Store** -> Plays a crucial role 1 ΟΝΝΧ .pbtxt **Register Model** Variant-Profiler Model Repository Variant-Generator "OK"

VARIANT GENERATOR

Generates model variants

Accuracy using val set

Profiler used to measure latency, memory use, loading time etc.

MODEL VARIANT SELECTION POLICY

Case I: Query arrival - Given an input query, forward this to appropriate worker Goal: minimize time to select model variant -> Critical path. Courte towards Approach

- Select least loaded active variant (no loading time)
 - If not, select a variant with low loading+inference time and worker with low utilization space to bad model

Which model variants are "active" on which worker description deseriativing mem cb weights. GPU across inference calls

MODEL VARIANT SELECTION POLICY ---- Worker

Case 2: Query load change
$$Orginal Worker
Options $1 \text{ variant lesnet-so}$ $2 \text{ variant lesnet-s$$$

GRFFDY HFURISTIC

Prune the search space for variant selection!

- Calculate headroom available on each worker
- How to scale?
 - Estimate cost of horizontal, vertical scaling
 - Compute cost for both proposals
 - Check if it fits in the worker -

> mall number of options budget

OPT problem ~ 308 or / min want it to be ms instead! La trigger before worker gets overloaded

SUMMARY

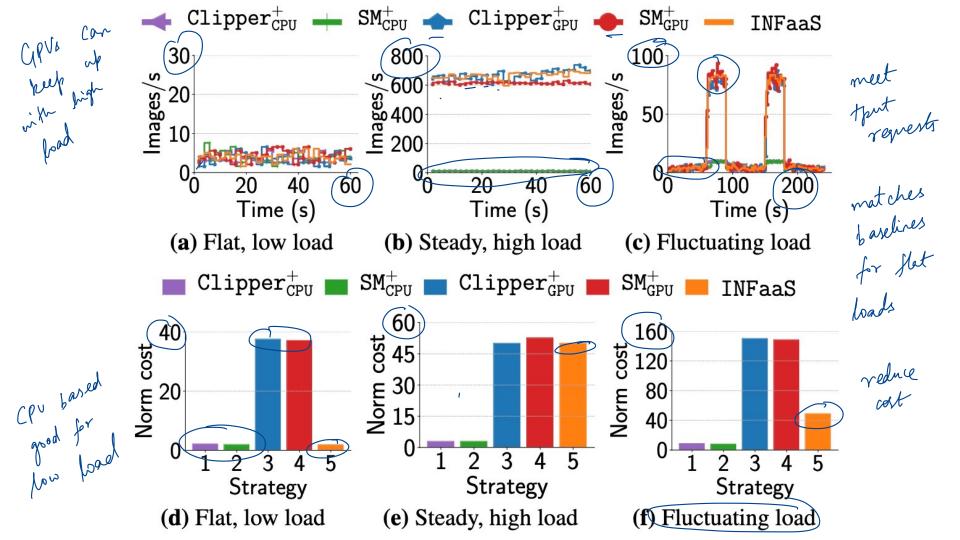
DL inference workloads properties

Model-variants search space large

INFaaS: Model-less serving Scale model variants horizontally and vertically

DISCUSSION

https://forms.gle/gkNTqdrSpLVpa9rg8


List one similarities and one difference between training schedulers like Gavel and inference scheduler like INFaaS

Similarity

-> Both handle hardware beterogeneity

Focus on Cost in reprence settings

Difference - Gavel s fractions for each job Limits of cluster IFAAS -> launch VMs / variant election to neet tput -> Infaas -> fest decisions Garel Stower de airie slower de cilions

NEXT STEPS