
CS 744: MAPREDUCE

Shivaram Venkataraman
Spring 2024

Good morning
!

ANNOUNCEMENTS

• Assignment 1 deliverables
– Code (comments, formatting)
– Report

• Partitioning analysis (graphs, tables, figures etc.)
• Persistence analysis (graphs, tables, figures etc.)
• Fault-tolerance analysis (graphs, tables, figures etc.)

INSTALLTION, SPARK UI

Scalable Storage Systems

Datacenter Architecture

Resource Management

Computational Engines

Machine Learning SQL Streaming Graph

Applications

BACKGROUND: PTHREADS
void *myThreadFun(void *vargp)
{
 sleep(1);
 printf(“Hello World\n");
 return NULL;
}

int main()
{
 pthread_t thread_id_1, thread_id_2;
 pthread_create(&thread_id_1, NULL, myThreadFun, NULL);
 pthread_create(&thread_id_2, NULL, myThreadFun, NULL);
 pthread_join(thread_id_1, NULL);
 pthread_join(thread_id_2, NULL);
 exit(0);
}

BACKGROUND: MPI
int main(int argc, char** argv) {
 MPI_Init(NULL, NULL);

 // Get the number of processes
 int world_size;
 MPI_Comm_size(MPI_COMM_WORLD, &world_size);

 // Get the rank of the process
 int world_rank;
 MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

 // Print off a hello world message
 printf("Hello world from rank %d out of %d processors\n",
 world_rank, world_size);

 // Finalize the MPI environment.
 MPI_Finalize();
}

mpirun -n 4 -f host_file ./mpi_hello_world

MOTIVATION

Build Google Web Search
 - Crawl documents, build inverted indexes etc.

Need for
 - automatic parallelization
 - network, disk optimization
 - handling of machine failures

OUTLINE

- Programming Model
- Execution Overview
- Fault Tolerance
- Optimizations

PROGRAMMING MODEL

Data type: Each record is (key, value)

Map function:
(Kin, Vin) à list(Kinter, Vinter)

Reduce function:
(Kinter, list(Vinter)) à list(Kout, Vout)

Example: Word Count

def mapper(line):
 for word in line.split():
 output(word, 1)

def reducer(key, values):
 output(key, sum(values))

Wiscontin

-

-man rese↳

* list [1
, 1)

Output

Word Count Execution: PART 1

the quick
brown fox

the fox ate
the mouse

how now
brown
cow

Map

Map

Map

Reduce

Reduce

Input Map Shuffle & Sort Reduce Output

shards Of

chunks
GFS

Task(
from-

--

intermediate
-itecolocate

- automatic
12ism

↳ independent

Word Count Execution: PART2

the quick
brown fox

the fox ate
the mouse

how now
brown
cow

Map

Map

Map

Reduce

Reduce

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1

mouse, 1
quick, 1

the, 1
brown, 1

fox, 1

quick, 1

the, 1
fox, 1
the, 1

how, 1
now, 1

brown, 1

ate, 1
mouse, 1

cow, 1

Input Map Shuffle & Sort Reduce Output

ASSUMPTIONS

ASSUMPTIONS

1. Commodity networking, less bisection bandwidth
2. Failures are common
3. Local storage is cheap
4. Replicated FS
5. Input is splittable

Word Count Execution

the quick
brown fox

Map Map

the fox ate
the mouse

Map

how now
brown
cow

Automatically
split work

Schedule tasks
with locality

MR Master
Submit a Job

Fault Recovery
If a task crashes:

– Retry on another node
– If the same task repeatedly fails, end the job

the quick
brown fox

Map Map

the fox ate
the mouse

Map

how now
brown
cow

independent of
-

-
buggs code

each other

mak

- HD

-> deterministra restart

-> idempotent

Fault Recovery

If a node crashes:
– Relaunch its current tasks on other nodes
 What about task inputs ? File system replication

the quick
brown fox

Map Map

the fox ate
the mouse

Map

how now
brown
cow

the quick
brown fox

Map

Fault Recovery

If a task is going slowly (straggler):
– Launch second copy of task on another node
– Take the output of whichever finishes first

the quick
brown fox

Map

the fox ate
the mouse

Map

how now
brown
cow

MORE DESIGN

Master failure

Locality

MAPREDUCE: SUMMARY

- Simplify programming on large clusters with frequent failures

- Limited but general functional API
- Map, Reduce, Sort
- No other synchronization / communication

- Fault recovery, straggler mitigation through retries

DISCUSSION
https://forms.gle/zLqtVUEYsZXWoYcL6

DISCUSSION

Indexing pipeline where you start with HTML documents. You want to index the
documents after removing the most commonly occurring words.
1. Compute most common words.
2. Remove them and build the index.
What are the main shortcomings of using MapReduce to do this?

Jeff Dean, LADIS 2009

NEXT STEPS

• Next lecture: Spark
• Assignment 1: Use Piazza!

