CS 744: MAPREDUCE

Shivaram Venkataraman
Spring 2024

ANNOUNCEMENTS

* Assignment | deliverables
— Code (comments, formatting)

— Report
* Partitioning analysis (graphs, tables, figures etc.)
* Persistence analysis (graphs, tables, figures etc.)

* Fault-tolerance analysis (graphs, tables, figures etc.)

INSTALLTION, SPARK Ul

Applications

BACKGROUND: PTHREADS

void *myThreadFun(void *vargp)

{
sleep(1);
printf(“Hello World\n");
return NULL;

}

int main()

pthread_t thread_id_1, thread_id_2;
pthread_create(&thread_id_1, NULL, myThreadFun, NULL);
pthread_create(&thread_id_2, NULL, myThreadFun, NULL);
pthread_join(thread_id 1, NULL);
pthread_join(thread_id 2, NULL);

exit(0);

BACKGROUND: MP!

int main(int argc, char** argv) {
MPI_Init(NULL, NULL);

// Get the number of processes
int world size;

mpirun -n 4 -f host file ./mpi_hello world

MPI_Comm_size(MPI_COMM_WORLD, &world_size);

// Get the rank of the process
int world_rank;

MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

// Print off a hello world message

printf("Hello world from rank %d out of %d processors\n",

world rank, world size);

// Finalize the MPI environment.
MPI_Finalize();

MOTIVATION

Build Google Web Search

- Crawl documents, build inverted indexes etc.

Need for
- automatic parallelization
- network, disk optimization

- handling of machine failures

QUTLINE

- Programming Model

- Execution Overview

- Fault Tolerance

- Optimizations

PROGRAMMING MODEL

Data type: Each record is (key, value)

Map function:
(Kin’vin) 9 IiSt(Kinter’Vinter)

Reduce function:
(Kinten IiSt(Vinter)) 9 IiSt(Kout’Vout)

EXAMPLE: WORD COUNT

def mapper(line):
for word in line.split():
output(word, 1)

def reducer(key, values):
output(key, sum(values))

WORD COUNT EXECUTION: PART 1

Input Map Shuffle & Sort Reduce Output

—]

the quick
brown fox

e

the fox ate
the mouse

e

X

how now
brown
CoOwW

Input

the quick
brown fox

the fox ate
the mouse

how now
brown
CoOwW

—

WORD COUNT EXECUTION: PARTZ

Map

— R

— R

Shuffle & Sort

Reduce
the, |
brown, |
fox, |
how, | ;__'

now, |

brown, |
the, |

fox, |
the, |

quick, | ;—'

ate, |
mouse, |
cow, |

]

D—

Output

brown, 2
fox, 2
how, |
now, |
the, 3

ate, |
cow, |
mouse, |
quick, |

ASSUMPTIONS

v A W N —

ASSUMPTIONS

Commodity networking, less bisection bandwidth
Failures are common

Local storage is cheap
Replicated FS
Input is splittable

WORD COUNT EXECUTION

Submit a Job

MR Master

rrp
the quick the fox ate

 brewn fox
=

Schedule tasks

Automatically with locality

split wor

FAULT RECOVERY

If a task crashes:
— Retry on another node

— If the same task repeatedly fails, end the job

_Map

the quick
_brawey fox

il

FAULT RECOVERY

If 2 node crashes:
— Relaunch its current tasks on other nodes

What about task inputs ? File system replication

_Map

the fox ate

FAULT RECOVERY

If a task is going slowly (straggler):
— Launch second copy of task on another node

— Take the output of whichever finishes first

3 O o3
A

the quick the quick the fox ate
b= fox ’

MORE DESIGN

Master failure

Locality

MAPREDUCE: SUMMARY

- Simplify programming on large clusters with frequent failures
- Limited but general functional API
- Map, Reduce, Sort

- No other synchronization / communication

- Fault recovery, straggler mitigation through retries

OO

DISCUSSION
] https://forms.gle/zZLqtVUEYsZXWoYcL6
"n

DISCUSSION

Indexing pipeline where you start with HTML documents. You want to index the
documents after removing the most commonly occurring words.

|. Compute most common words.

2. Remove them and build the index.

What are the main shortcomings of using MapReduce to do this?

Input (MB/s)

Shuffle (MB/s)

Output (MB/s)

20000 —
15000 —
10000 —

5000 —

Done

20000 —
15000 —
10000

5000 —

1000

20000 —
15000 —
10000

5000 —

1000

——
500
Seconds

1000

(a) Normal execution

20000 —
15000 —
10000 —

5000

Dq

ne

20000 —
15000 —
10000 —

5000 —

20000 —
15000 —
10000 —

5000 —

T T T T T T T

T T
500 1000

Seconds
(b) No backup tasks

MapReduce Usage Statistics Over Time

Aug, ‘04 Mar, ‘06 Sep, '07

Number of jobs 29K
Average completion time (secs) 634
Machine years used 217
Input data read (TB) 3,288
Intermediate data (TB) 758
Output data written (TB) 193
Average worker machines 157

Jeff Dean, LADIS 2009

171K 2,217K
874 395
2,002 11,081
52,254 403,152
6,743 34,774
2,970 14,018
268 394

Sep, '09
3,467K
475
25,562
544,130
90,120
57,520
488

NEXT STEPS

* Next lecture: Spark

* Assignment |: Use Piazza!

