Hello!

CS 744: MARIUS

Shivaram Venkataraman Spring 2024

ADMINISTRIVIA

- Midterm grades 95% done. TODAY
- Regrade requests

Course Project: Check in by April 16th

To next Tuesday

PROJECT CHECK-INS

One page document that includes the following

cloud lab hard ware

- What have you done so far
- Any challenges that you have faced so far

Your timeline (from now till end of the semester)

Things you need help from the course staff

Any other comments/remarks

Things you need help from the course staff

Any other comments/remarks

Applications SQL Machine Learning

Streaming

Graph

Computational Engines

Scalable Storage Systems

Resource Management

Analytics

Analytics

Page Rank

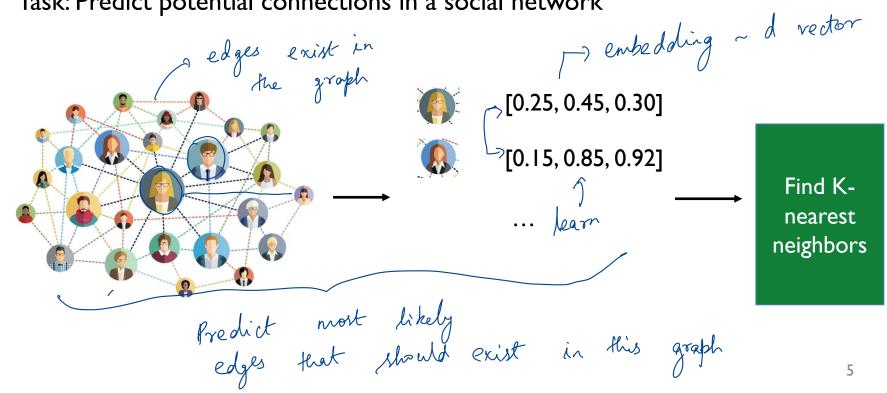
Connected

Components

Learning on graph structured data?

EXAMPLE: LINK PREDICTION

Task: Predict potential connections in a social network



BACKGROUND: GRAPH FMBFDDING MODFLS

maximize score in order to learn embeddings Score function —

Capture structure of the graph given source, destination embedding

Loss function

Maximize score for edges in graph

Minimize for others (negative edges)

 $e \in G \ e' \in S'_e$

Contrastive learning

score for edges in graph positive edges or others (negative edges)
$$\mathcal{L} = \sum_{e \in G} \sum_{e' \in S'_e} \max(f(e) - f(e') + \lambda, 0))$$
 Distance

[0.1, 0.2] [0.2,0.3]

Initialize embeddings, TRAINING ALGORITHM

to random vector

SGD/AdaGrad optimizer

Sample positive, negative edges

Access source, dest embeddings for each edge in batch

Model is vert

sample edges from the graph

for i in range(num_batches)

B = getBatchEdges(i)

E = getEmbeddingParams(B)

G = computeGrad(E, B)

updateEmbeddingParams(G)

embedding d = lize of embedding (100)

random

79 initial embeddings

7

CHALLENGE: LARGE GRAPHS

Large graphs → Large model sizes

Example

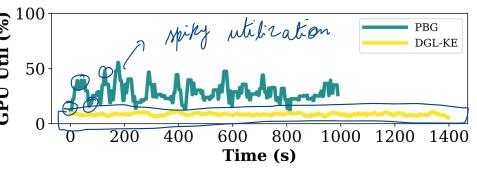
Need to scale beyond GPU memory, CPU memory!

CHALLENGE: DATA MOVEMENT

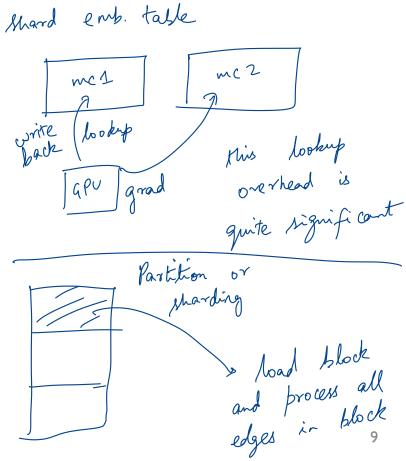
DGL-KE: Sample edges, embeddings from CPU memory

con

Pytorch-BigGraph: Partition embeddings so that one partition fits on GPU memory. Load sequentially



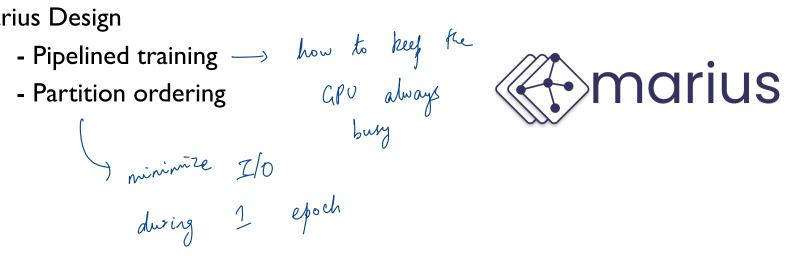
One epoch on the Freebase86m knowledge graph

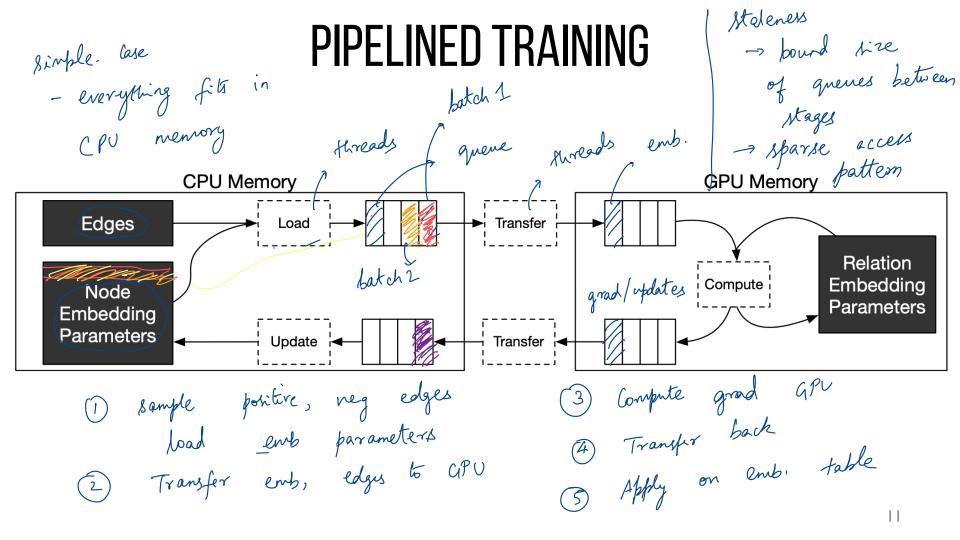


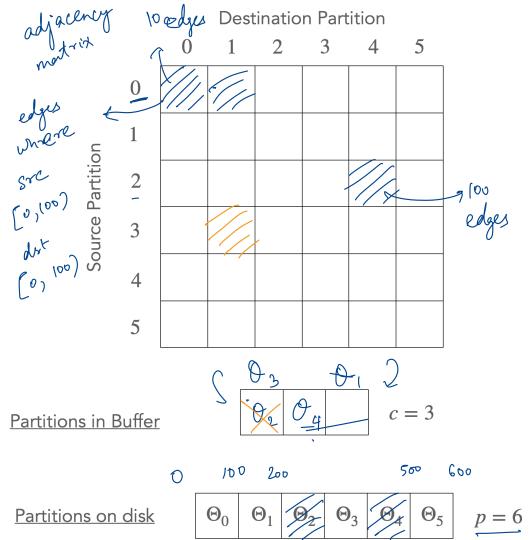
MARIUS

I/O efficient system for learning graph embeddings

Marius Design







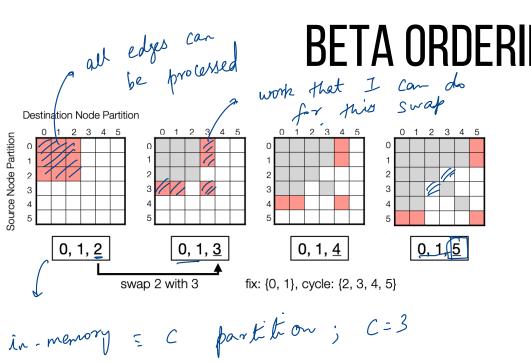
OUT OF MEMORY TRAINING

Key idea: Maintain a cache of partitions in CPU memory

Questions

Order of partition traversal?

How to perform eviction?



Initialize cache with c partitions

Swap in partition that leads to highest number of unseen pairs

Achieved by fixing c-1 partitions and swap remaining in any order

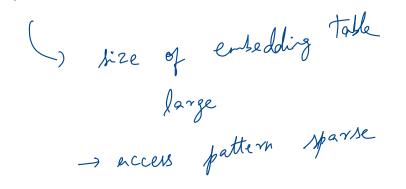
More work for every swap => minimize
number of
swaps

SUMMARY

Graph Embeddings: Learn embeddings from graph data for ML

Marius: Efficient single-machine training

- → Pipelining to use CPU, GPU
- → Partition buffer, BETA ordering



DISCUSSION

https://forms.gle/9H6dhiiSUtJU29yd7

How does the partitioning scheme used in this paper differ from partitioning schemes used in PowerGraph and why?

Powergraph -> minimizing replicas / nors which are remote Marius -> ordering of computation -> each edge is in only I bucket! Ly rertex may be visited many times. shigh utilization - cheaper

	[System	Deployment	Epoch Time (s)	Per Epoch Cost (\$)	
nere GPUs ntiliation goes down	Ī	Marius	1-GPU	727	.61	
ware all		DGL-KE	2-GPUs	1068 /	1.81	
ton	/	DGL-KE	4-GPUs	542	1.84	
itilia C	/	DGL-KE	8-GPUs	277	1.88	
dowsn	<u>ا</u> –ا	DGL-KE	Distributed	1622	2.22	
goes		PBG	1-GPU 🗸	3060 /	2.6	
\(\delta\)		PBG	2-GPUs	1400 /	2.38	
		PBG	4-GPUs	(515)	1.75	
		PBG	8-GPUs	419 -	(2.84)	
		PBG	Distributed	1474	2.02	
	•			Castery there	I-GPU Marin	4

What are some shortcomings of Marius? What could the authors do to further improve the system?

NEXT STEPS

Next class: Recommendation Models

Project check-ins next week