
CS 744: MARIUS

Shivaram Venkataraman
Spring 2024

Hello !

ADMINISTRIVIA

- Midterm grades
- Regrade requests

- Course Project: Check in by April 16th

~ 95 % done .
TODAY

↳ next Tuesday

PROJECT CHECK-INS

One page document that includes the following

- What have you done so far
- Any challenges that you have faced so far
- Your timeline (from now till end of the semester)
- Things you need help from the course staff
- Any other comments/remarks

3

cloud lab

hardware

-

lot
&

J-> changed
projectfrom

introduction ?

Scalable Storage Systems

Datacenter Architecture

Resource Management

Computational Engines

Machine Learning SQL Streaming Graph

Applications

↳
Graph

Analytics
-> PageRank
Connected

components

Learninggraph structured
data ?

EXAMPLE: LINK PREDICTION

Task: Predict potential connections in a social network

5

[0.25, 0.45, 0.30]

[0.15, 0.85, 0.92]

…
Find K-
nearest

neighbors

-

exist in

↳
edges

the graph
↑ embedding

-d rector

E
O T-

learn

-
Predict most likely
edges that should exist in this graph

BACKGROUND: GRAPH EMBEDDING MODELS

Score function
 Capture structure of the graph given source, destination embedding

Loss function
 Maximize score for edges in graph
 Minimize for others (negative edges)

6

NEGATIVE SAMPLING

Sample from edges not in the graph!

Two options
1. According to data distribution

2. Uniformly

->
maximize score in order to learn embeddings

Contractive learning [0 - 1
,
0 . 27 [0 .2, 0 . 35

--0
-> positive edges

↳ not present in groph) lovehilarity
I Distance

function

TRAINING ALGORITHM

SGD/AdaGrad optimizer

Sample positive, negative edges

Access source, dest embeddings for
each edge in batch

7

for i in range(num_batches)
 B = getBatchEdges(i)
 E = getEmbeddingParams(B)
 G = computeGrad(E, B)
 updateEmbeddingParams(G)

Initialize embeddings
to random rector

&
sample "port" from the grath

-

Model is

->

size enbeltinga
this !

CHALLENGE: LARGE GRAPHS

Large graphs à Large model sizes

Example
 3 Billion vertices, d = 400
 Model size = 3 billion * 400 * 4 = 4.8 TB!

Need to scale beyond GPU memory, CPU memory!

8

- embedding
tablee

CHALLENGE: DATA MOVEMENT

DGL-KE: Sample edges, embeddings from
CPU memory

Pytorch-BigGraph: Partition embeddings so
that one partition fits on GPU memory.
Load sequentially

9One epoch on the Freebase86m knowledge graph

shard emb . table

mc2
CPU

memoryMFloorperrt This lookup

Mi grad overhead is

quite significant
-

spiky utilization

oox
->

tion
ording

and

scoc

block
all

and process
edges

in

MARIUS

I/O efficient system for learning graph embeddings

Marius Design
 - Pipelined training
 - Partition ordering

10

-> how to keep the

GPU always

↳ minimize /0
busy

during 1 epoch

PIPELINED TRAINING

11

Stateness

simple- Case -> bound line

~ everything fits
in of queues between

stages
queue threads emb . access

>

an

Y ↑
I -> sparse

pattern

Y
-

grad/updates
~~AE ↑-/I

① sample positive , nag edges ③ Compute grad GPV

load emb parameters ④ Transfer
back

table
-

② Transfer emb, edges to GPU

⑤ Apply
on

emb.

OUT of MEMORY training

12

Key idea: Maintain a cache of partitions in
CPU memory

Questions
 Order of partition traversal?
 How to perform eviction?

adjacency 10 edges
motwit To-~ -- ~=> - -

edges ↳
- -

where
suc

- /00

20 ,
100 - # edges

de 100

I Ob Ol 2 1 pass over all edges

& O4 => visit all buckets in

·Oz--
O 100 200 500 600 edge partitions
- -Fr -

BETA ORDERING

13

Initialize cache with c partitions

Swap in partition that leads to
highest number of unseen pairs

Achieved by fixing c-1 partitions
and swap remaining in any order

alledgescarprocessed
-

↑ E
workthate ap

do

/
-- ↳

=

-

L
-

in-memory = C partition ; C = 3

= minimize

More
work for every swap

number of

swaps

SUMMARY

Graph Embeddings: Learn embeddings from graph data for ML

Marius: Efficient single-machine training
 Pipelining to use CPU, GPU
 Partition buffer, BETA ordering

↳ size of
embedding

table

- large
->

-> access pattern sparse

DISCUSSION
https://forms.gle/9H6dhiiSUtJU29yd7

How does the partitioning scheme used in this paper differ from partitioning schemes
used in PowerGraph and why?

Powergraph
-> minmining replicas/ubrs which are remote

Marius -> ordering of computation
1 bucket !!

Similarity -> each edge is in only Emes

↳ vertex may
be visited many

high
utilization - cheaper

more
GOVs

&
On -> cheaper ?

utilization [I O
-

E

down

goes [
&

o O

faster than 1-GPU Marius

What are some shortcomings of Marius? What could the authors do to
further improve the system?

18

NEXT STEPS

Next class: Recommendation Models
Project check-ins next week

