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ADMINISTRIVIA

- Midterm grades
- Regrade requests

- Course Project: Check in by April 16th

~ 95 % done .
TODAY

↳ next Tuesday



PROJECT CHECK-INS

One page document that includes the following

- What have you done so far
- Any challenges that you have faced so far
- Your timeline (from now till end of the semester)
- Things you need help from the course staff
- Any other comments/remarks
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Scalable Storage Systems

Datacenter Architecture

Resource Management

Computational Engines

Machine Learning SQL Streaming Graph

Applications

↳
Graph

Analytics
-> PageRank
Connected

components

Learninggraph structured
data ?



EXAMPLE: LINK PREDICTION

Task: Predict potential connections in a social network
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BACKGROUND: GRAPH EMBEDDING MODELS

Score function
 Capture structure of the graph given source, destination embedding
 
Loss function
 Maximize score for edges in graph
 Minimize for others (negative edges)
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NEGATIVE SAMPLING

Sample from edges not in the graph!

Two options
1. According to data distribution

2. Uniformly

->
maximize score in order to learn embeddings

Contractive learning [0 - 1
,
0 . 27 [0 .2, 0 . 35

--0
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I Distance

function



TRAINING ALGORITHM

SGD/AdaGrad optimizer

Sample positive, negative edges

Access source, dest embeddings for 
each edge in batch
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for i in range(num_batches)
 B = getBatchEdges(i)
 E = getEmbeddingParams(B)
 G = computeGrad(E, B)
 updateEmbeddingParams(G)

Initialize embeddings
to random rector

&
sample "port" from the grath

-

---

Model is

->

size enbeltinga
this !



CHALLENGE: LARGE GRAPHS

Large graphs à Large model sizes 

Example
 3 Billion vertices, d = 400 
 Model size = 3 billion * 400 * 4 = 4.8 TB!

Need to scale beyond GPU memory, CPU memory!
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CHALLENGE: DATA MOVEMENT

DGL-KE: Sample edges, embeddings from 
CPU memory

Pytorch-BigGraph: Partition embeddings so 
that one partition fits on GPU memory.  
Load sequentially
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MARIUS

I/O efficient system for learning graph embeddings

Marius Design
 - Pipelined training
 - Partition ordering
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-> how to keep the
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↳ minimize /0
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during 1 epoch



PIPELINED TRAINING
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Stateness

simple- Case -> bound line

~ everything fits
in of queues between

stages
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OUT of MEMORY training
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Key idea: Maintain a cache of partitions in 
CPU memory

Questions
 Order of partition traversal? 
 How to perform eviction?
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BETA ORDERING
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Initialize cache with c partitions

Swap in partition that leads to 
highest number of unseen pairs

Achieved by fixing c-1 partitions 
and swap remaining in any order

alledgescarprocessed
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More
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SUMMARY

Graph Embeddings: Learn embeddings from graph data for ML

Marius: Efficient single-machine training
 Pipelining to use CPU, GPU 
 Partition buffer, BETA ordering

↳ size of
embedding

table

- large
->

-> access pattern sparse



DISCUSSION
https://forms.gle/9H6dhiiSUtJU29yd7



How does the partitioning scheme used in this paper differ from partitioning schemes 
used in PowerGraph and why?

Powergraph
-> minmining replicas/ubrs which are remote

Marius -> ordering of computation
1 bucket !!

Similarity -> each edge is in only Emes

↳ vertex may
be visited many
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What are some shortcomings of Marius? What could the authors do to 
further improve the system?
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NEXT STEPS

Next class: Recommendation Models
Project check-ins next week


