
CS 744: Powergraph

Shivaram Venkataraman
Spring 2024

Hello

ADMINISTRIVIA

- Midterm grading in progress
- Cloudlab, GCP details

- Reservations
- Redeeming credits

-> end of this week

-> 2 weeks

-> TA post on
Piazza

- Check-ins

~ April 16th ?

-> Template/guidance on Piazza

Scalable Storage Systems

Datacenter Architecture

Resource Management

Computational Engines

Machine Learning SQL Streaming Graph

Applications
graph

structured

O data

- PageRank
- M2 algorithms

on

graphs

GRAPH DATA

Datasets Application

results
search

in Siri etc .

Social networks-> Predict link

-
Recommend friends /

Road networks products

structure path
Protein -shortesteine neu proteine

topologe
e

Internet capital
-

Germany Barlin
Knowledge graph 00

GRAPH ANALYTICS

Perform computations on graph-structured data

Examples
 PageRank
 Shortest path
 Connected components
 …

Tables

<
OLTP

OLAP transactions
↳ online

Analytics

-C
Analytic On graphs

-> SCOPE I
Graph databases - Neo4j

PREGEL: PROGRAMMING MODEL
Message combiner(Message m1, Message m2):
 return Message(m1.value() + m2.value());

void PregelPageRank(Message msg):
 float total = msg.value();

 vertex.val = 0.15 + 0.85*total;

 foreach(nbr in out_neighbors):
 SendMsg(nbr, vertex.val/num_out_nbrs);

~ 2008-2009 "MapReduce"
-
--- for grafts

0. 35 0.35
0 . 8

;-

message I incoming
- 0.8 message↓

. [
- -

-

-

-
"Think - like-a-vertex send to

w
bus ↳

update Vertex state

Y

ebrs

NATURAL GRAPHS millions of
vertices mbws

-some modes have a lot of
- Skew

neighbors (Upto /M nbrs) log &
with

1-10

↳ lot of computation/messages

for his high degree vertex I 1
-

Imbalance

* madian degweren night be

vertices

*

-> log
O

-

less than 10 ? Most

have few neighbors

POWERGRAPH

Programming Model:
Gather-Apply-Scatter

Better Graph Partitioning
with vertex cuts

Sync / Async execution

->
extends think-like-a-

Vertex

-> single
machine

-> Distributed

GATHER-APPLY-SCATTER
Gather: Accumulate info from nbrs

Apply: Accumulated value to vertex

Scatter: Update adjacent edges

// gather_nbrs: IN_NBRS
gather(Du, D(u,v), Dv):
 return Dv.rank / #outNbrs(v)

sum(a, b): return a+b

apply(Du, acc):
 rnew = 0.15 + 0.85 * acc
 Du.delta = (rnew - Du.rank)/

 #outNbrs(u)
 Du.rank = rnew

// scatter_nbrs: OUT_NBRS
scatter(Du,D(u,v),Dv):

if(|Du.delta|> ε) Activate(v)
return delta

Delta based filtering
to reduce work

in next iteration ! state of Vertex
U

state of
- - - edge (,

v]

-
-> state of ~

final message into apply - > -

--

L [Accumulators
-

- --

- Vertex

- messages
--

Gather - input
vertax

, edge states I
-

Jhownach
accumulator

returns
-

Apply - vertex ,
accumulator

state
↳ update - --

scatter- updated Vertex & can
- =
-

update br

EXECUTION MODEL

Active Queue

Accumulators

Vertex State

Gather

Apply

Scatter

gather (Vo)
At beginning

all vertices
0 : 15)
- (V ,

)
-> Activate Erenold. ot- gather

:
~&
↑ apply CVo)

Ivy/vs/vz / v, /00 read acc

write
back updated state

↑ a delta value

Activate (V)

CACHING

Active Queue

Delta caching
 Cache accumulator value for vertex

 Optionally scatter returns a delta
 Accumulate deltas

Accumulators

Vertex State

Stipgather
peservertex

&
-> Reuse acc computed in

iterationprev
is
minimal

-> If change
activate Vertex

don't

SYNC VS ASYNC

Sync Execution
 Gather for all active vertices,
 followed by Apply, Scatter

 Barrier after each minor-step

Async Execution
 Execute active vertices,
 as cores become available

 No Barriers! Optionally serializable

Doesn't guarantee
C- you get same

result !

threads
many L

-> gather phase
thread call gather waiting ?? -

each scatter

On
a

Vertex apply I all vertices

All the reads (of acc/state barrier

happen all updates have finished !
- Gate all I all verticethe

barrier -
-

DISTRIBUTED EXECUTION

Symmetric system, no coordinator

Partition graph across machines
Communicate to spread updates, read state

read
- -

- D ACC

+ T ·eres I D vertere
-

vertex 1 D =L T quere

state

queur T worker1

-

GRAPH PARTITIONING parallelize
programming"ghostia GAS
model

replica

0-0 ⑳ E O&

8...
-

-

Assign a vertex to a
-

Assign an edge to a

maching machine

- Edges are
cut if

is primary
other

vertex is in a diff
- One

machine

vertex and others

formachine
natural graphs.

- Imbalance for replica

RANDOM, GREEDY OBLIVIOUS

Three distributed approaches:
Random Placement

Coordinated Greedy Placement

Oblivious Greedy Placement

-

↳ stream thre edges

Fast

1 w

and place edge onrandom
machine

↳ if either vertex is placed

o

1 w
favor

that machine

↳ Avoid Coordination locally
tracking if

Vertex is present

OTHER FEATURES

Async Serializable engine
 Preventing adjacent vertex from running simultaneously
 Acquire locks for all adjacent vertices

Fault Tolerance
 Checkpoint at the end of super-step for sync

SUMMARY

Gather-Apply-Scatter programming model
Vertex cuts to handle power-law graphs
Balance computation, minimize communication

DISCUSSION
https://forms.gle/co1BV6SzH7t31phGA

Consider the PageRank implementation in Spark vs synchronous PageRank in
PowerGraph. What are some reasons why PowerGraph might be faster?

-> Better balance random
↳ smarter partitioning

&

vs- partitioning
skew friendly processing

->
tower

communication

↳ faster than shuffle based approach
in

spark
-> scheduling granularity

- skip
vertices if

not actuated

accumulators

-> Prog . model has features like Caching
computation

reduce

NEXT STEPS

Next class: Marius

