
CS 744: Powergraph

Shivaram Venkataraman
Spring 2024

ADMINISTRIVIA

- Midterm grading in progress
- Cloudlab, GCP details

- Reservations
- Redeeming credits

Scalable Storage Systems

Datacenter Architecture

Resource Management

Computational Engines

Machine Learning SQL Streaming Graph

Applications

GRAPH DATA

Datasets Application

GRAPH ANALYTICS

Perform computations on graph-structured data

Examples
 PageRank
 Shortest path
 Connected components
 …

PREGEL: PROGRAMMING MODEL
Message combiner(Message m1, Message m2):
 return Message(m1.value() + m2.value());

void PregelPageRank(Message msg):
 float total = msg.value();

 vertex.val = 0.15 + 0.85*total;

 foreach(nbr in out_neighbors):
 SendMsg(nbr, vertex.val/num_out_nbrs);

NATURAL GRAPHS

POWERGRAPH

Programming Model:
Gather-Apply-Scatter

Better Graph Partitioning
with vertex cuts

Sync / Async execution

GATHER-APPLY-SCATTER
Gather: Accumulate info from nbrs

Apply: Accumulated value to vertex

Scatter: Update adjacent edges

// gather_nbrs: IN_NBRS
gather(Du, D(u,v), Dv):
 return Dv.rank / #outNbrs(v)

sum(a, b): return a+b

apply(Du, acc):
 rnew = 0.15 + 0.85 * acc
 Du.delta = (rnew - Du.rank)/

 #outNbrs(u)
 Du.rank = rnew

// scatter_nbrs: OUT_NBRS
scatter(Du,D(u,v),Dv):

if(|Du.delta|> ε) Activate(v)
return delta

EXECUTION MODEL

Active Queue

Accumulators

Vertex State

Gather

Apply

Scatter

CACHING

Active Queue

Delta caching
 Cache accumulator value for vertex

 Optionally scatter returns a delta
 Accumulate deltas

Accumulators

Vertex State

SYNC VS ASYNC

Sync Execution
 Gather for all active vertices,
 followed by Apply, Scatter

 Barrier after each minor-step

Async Execution
 Execute active vertices,
 as cores become available

 No Barriers! Optionally serializable

DISTRIBUTED EXECUTION

Symmetric system, no coordinator

Partition graph across machines
Communicate to spread updates, read state

GRAPH PARTITIONING

RANDOM, GREEDY OBLIVIOUS

Three distributed approaches:
Random Placement

Coordinated Greedy Placement

Oblivious Greedy Placement

OTHER FEATURES

Async Serializable engine
 Preventing adjacent vertex from running simultaneously
 Acquire locks for all adjacent vertices

Fault Tolerance
 Checkpoint at the end of super-step for sync

SUMMARY

Gather-Apply-Scatter programming model
Vertex cuts to handle power-law graphs
Balance computation, minimize communication

DISCUSSION
https://forms.gle/co1BV6SzH7t31phGA

Consider the PageRank implementation in Spark vs synchronous PageRank in
PowerGraph. What are some reasons why PowerGraph might be faster?

NEXT STEPS

Next class: Marius

