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ADMINISTRIVIA

- Course Project Proposal: Due soon!

- Midterm details are on Piazza. 

- No reviews for Tuesday (Snowflake)! 

- one week
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SQL: STRUCTURED QUERY LANGUAGE
~ 1970s
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PROCEDURAL VS. RELATIONAL

SELECT COUNT(*) 
FROM “users”
WHERE age < 21

lines = sc.textFile(“users")
csv = lines.map(x =>
    x.split(‘,’))
young = csv.filter(x => 
    x(1) < 21)
println(young.count())

E
-

metadata the organization of

How the query schema
data

is executed don't E Name : String
,

Age : Int

--

!
->

more

-

-
- succinct

&
- 1 captured in 1

string
--

int
"Human friendly

query
Name I age

10
-

/

- L
what needs to be executed....

23
--- S

.... / 48



SCOPE

SELECT query, COUNT(*) 
AS count
FROM "search.log" 

USING LogExtractor
GROUP BY query
HAVING count > 1000
ORDER BY count DESC;
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SCOPE OPERATORS

Input reading:   What is different?

EXTRACT column[:<type>] [, ...] 
FROM <input_stream(s) >
USING <Extractor> [(args)] 
[HAVING <predicate>]
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SQL OPERATORS

Select – read rows that satisfy some predicate
Join – Support for Inner and Outer join

GroupBy – Group by some column
OrderBy – Sorting the output
Aggregations – COUNT, SUM, MAX etc. 
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LANGUAGE INTEGRATION
R1 = SELECT A+C AS ac, B.Trim() AS B1 
FROM R 
WHERE StringOccurs(C, “xyz”) > 2

#CS
public static int StringOccurs(string str, string ptrn){
 int cnt=0; int pos=-1; 
 while (pos+1 < str.Length) { 
    pos = str.IndexOf(ptrn, pos+1); 
    if (pos < 0) break; 
    cnt++; 
  } 
  return cnt; 
} 
#ENDCS
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MAPREDUCE-LIKE?

Process

Reduce

Combine
 COMBINE S1 WITH S2 
 ON S1.A==S2.A AND S1.B==S2.B AND S1.C==S2.C
 USING MultiSetDifference
 PRODUCE A, B, C
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EXECUTION: COMPILER

SELECT query, COUNT() AS count
FROM "search.log" 
USING LogExtractor 
GROUP BY query
HAVING count > 1000
ORDER BY count DESC;

Check syntax, resolve names

Checks if columns have been defined

Result: Internal parse tree
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OPTIMIZER

Rewrite the query expression à lowest cost

Examples:
 Removing unnecessary columns
 Pushing down selection predicates
 Pre-aggregating 

SELECT query, COUNT() AS count
FROM "search.log" 
USING LogExtractor 
GROUP BY query
HAVING count > 1000
ORDER BY count DESC;
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RUNTIME OPTIMIZATIONS

Hierarchical aggregation

Locality-sensitive task placement
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SUMMARY, TAKEAWAYS

Relational API
 - Enables rich space of optimizations
 - Easy to use, integration with C#
 
Scope Execution
 - Compiler to check for errors, generate DAG
 - Optimizer to accelerate queries (static + dynamic)

Precursor to systems like SparkSQL

-



DISCUSSION
https://forms.gle/D7D1b1g3VoQSJxBQ6



Consider you have a column-oriented data layout on your storage system 
(Example below).  What are some reasons that a SCOPE query might be 
faster than running equivalent MR program?

http://dbmsmusings.blogspot.com/2017/10/apache-arrow-vs-parquet-and-orc-do-we.html
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Does SCOPE-like Optimizer help ML workloads?  Consider the code in your 
Assignment2.  What parts of your code would benefit and what parts would not?

Distributed ML

↳ Insert Scatter/Gather automatically
Reduce/Broadcast

↳ Hierarchical All Reduce

based on
network topology etc.

10 - input reading /Data lader is faster



NEXT STEPS

Next class: Elastic Data Warehousing with SnowFlake

Project proposals due soon! 
Midterm: next week


