
CS 744: SCOPE

Shivaram Venkataraman
Spring 2024

Hello !!

ADMINISTRIVIA

- Course Project Proposal: Due soon!

- Midterm details are on Piazza.

- No reviews for Tuesday (Snowflake)!

- one week

Scalable Storage Systems

Datacenter Architecture

Resource Management

Computational Engines

Machine Learning SQL Streaming Graph

Applications

PyTorch
PipeDream ->

VLLM
Spark , MR

GFS

Gavel
Mesos 1

DRF
InFaaS

->

SQL: STRUCTURED QUERY LANGUAGE
~ 1970s

DATABASE SYSTEMS
and perform

modifications
to DBMS

SOL queriesSeein ⑳ OLAP

Set of

↳ - rows
--

OLTP O
↳ Transactions

↳ Analytics

online -> long queries
in an

web front and read

setting only

PROCEDURAL VS. RELATIONAL

SELECT COUNT(*)
FROM “users”
WHERE age < 21

lines = sc.textFile(“users")
csv = lines.map(x =>
 x.split(‘,’))
young = csv.filter(x =>
 x(1) < 21)
println(young.count())

E
-

metadata the organization of

How the query schema
data

is executed don't E Name : String
,

Age : Int

--

!
->

more

-

-
- succinct

&
- 1 captured in 1

string
--

int
"Human friendly

query
Name I age

10
-

/

- L
what needs to be executed....

23
--- S

.... / 48

SCOPE

SELECT query, COUNT(*)
AS count
FROM "search.log"

USING LogExtractor
GROUP BY query
HAVING count > 1000
ORDER BY count DESC;

I sparksou O
↓ SQL style

queries
↳ best of
both

worlds
~>Overy Plan
1

->
MR <I 3

(L
similar to SOL Microsoft

familiar to users

I

SCOPE OPERATORS

Input reading: What is different?

EXTRACT column[:<type>] [, ...]
FROM <input_stream(s) >
USING <Extractor> [(args)]
[HAVING <predicate>]

Raw Files in Es Structured
- table

↑
Schema used by rest

of the

--

files query
->

-
&

out data Custom user defined dass

filter
one row from

the

at the source that parers
fle

SQL OPERATORS

Select – read rows that satisfy some predicate
Join – Support for Inner and Outer join

GroupBy – Group by some column
OrderBy – Sorting the output
Aggregations – COUNT, SUM, MAX etc.

subset of SOL Standard
↳ Filter/Beleck-

Extractor
-

- El file part
↳ natively implemented

Ease to me in the system

for date analysts

LANGUAGE INTEGRATION
R1 = SELECT A+C AS ac, B.Trim() AS B1
FROM R
WHERE StringOccurs(C, “xyz”) > 2

#CS
public static int StringOccurs(string str, string ptrn){
 int cnt=0; int pos=-1;
 while (pos+1 < str.Length) {
 pos = str.IndexOf(ptrn, pos+1);
 if (pos < 0) break;
 cnt++;
 }
 return cnt;
}
#ENDCS

-> Language
plus Integrated
2 -

C# Trim function
Queries

--
- -- (LING)

↳ # function defined inline

-

-
--

>import black box to the

query

L
I

run

Optimizer

run

ship
this to all talks

↳ commit Format) deserialize

so that functions
can

-m

MAPREDUCE-LIKE?

Process

Reduce

Combine
 COMBINE S1 WITH S2
 ON S1.A==S2.A AND S1.B==S2.B AND S1.C==S2.C
 USING MultiSetDifference
 PRODUCE A, B, C

One

(Map) UDF that -> more

or

output

takes in ippet
rows rows

(with
schemal

rows or

↳ grouped data All
belong

to -
One

rows
that more

-> NOT THE SAME
group (with scheme)

tables which
Two

tioned.I are Lov part
one output table

EXECUTION: COMPILER

SELECT query, COUNT() AS count
FROM "search.log"
USING LogExtractor
GROUP BY query
HAVING count > 1000
ORDER BY count DESC;

Check syntax, resolve names

Checks if columns have been defined

Result: Internal parse tree

-

L -
check column types

match up

planLogical query -sal-lp-la-tain

OPTIMIZER

Rewrite the query expression à lowest cost

Examples:
 Removing unnecessary columns
 Pushing down selection predicates
 Pre-aggregating

SELECT query, COUNT() AS count
FROM "search.log"
USING LogExtractor
GROUP BY query
HAVING count > 1000
ORDER BY count DESC;

Logical -> Optimized -
Area in DBMS

plan that
GFS chunks

can be
executed

->
don't read

"Darede ->

flenetwork Shuf

↳ filter out
-

rows early

- - I- thin->

- partition
-

1 /

-- -- "Wisconsin
-

RUNTIME OPTIMIZATIONS

Hierarchical aggregation

Locality-sensitive task placement

↳ change the query plan
at

runtime
↳

aggr
within a machine

↳ within a reck

↳ extractors on thelare
machine input exists

↳ operator
close to where

its infuts
exist

SUMMARY, TAKEAWAYS

Relational API
 - Enables rich space of optimizations
 - Easy to use, integration with C#

Scope Execution
 - Compiler to check for errors, generate DAG
 - Optimizer to accelerate queries (static + dynamic)

Precursor to systems like SparkSQL

-

DISCUSSION
https://forms.gle/D7D1b1g3VoQSJxBQ6

Consider you have a column-oriented data layout on your storage system
(Example below). What are some reasons that a SCOPE query might be
faster than running equivalent MR program?

http://dbmsmusings.blogspot.com/2017/10/apache-arrow-vs-parquet-and-orc-do-we.html

I I
H

->
Compression
-

2

S
outE

-> optimization for -> Extractor - filter
that are-

operators columns

I data compression not used
->

-> fewer bytes
read

-

Does SCOPE-like Optimizer help ML workloads? Consider the code in your
Assignment2. What parts of your code would benefit and what parts would not?

Distributed ML

↳ Insert Scatter/Gather automatically
Reduce/Broadcast

↳ Hierarchical All Reduce

based on
network topology etc.

10 - input reading /Data lader is faster

NEXT STEPS

Next class: Elastic Data Warehousing with SnowFlake

Project proposals due soon!
Midterm: next week

