
CS 744: SCOPE

Shivaram Venkataraman
Spring 2024

ADMINISTRIVIA

- Course Project Proposal: Due soon!

- Midterm details are on Piazza.

- No reviews for Tuesday (Snowflake)!

Scalable Storage Systems

Datacenter Architecture

Resource Management

Computational Engines

Machine Learning SQL Streaming Graph

Applications

SQL: STRUCTURED QUERY LANGUAGE

DATABASE SYSTEMS

PROCEDURAL VS. RELATIONAL

SELECT COUNT(*)
FROM “users”
WHERE age < 21

lines = sc.textFile(“users")
csv = lines.map(x =>
 x.split(‘,’))
young = csv.filter(x =>
 x(1) < 21)
println(young.count())

SCOPE

SELECT query, COUNT(*)
AS count
FROM "search.log"

USING LogExtractor
GROUP BY query
HAVING count > 1000
ORDER BY count DESC;

SCOPE OPERATORS

Input reading: What is different?

EXTRACT column[:<type>] [, ...]
FROM <input_stream(s) >
USING <Extractor> [(args)]
[HAVING <predicate>]

SQL OPERATORS

Select – read rows that satisfy some predicate
Join – Support for Inner and Outer join

GroupBy – Group by some column
OrderBy – Sorting the output
Aggregations – COUNT, SUM, MAX etc.

LANGUAGE INTEGRATION

R1 = SELECT A+C AS ac, B.Trim() AS B1
FROM R
WHERE StringOccurs(C, “xyz”) > 2

#CS
public static int StringOccurs(string str, string ptrn){
 int cnt=0; int pos=-1;
 while (pos+1 < str.Length) {
 pos = str.IndexOf(ptrn, pos+1);
 if (pos < 0) break;
 cnt++;
 }
 return cnt;
}
#ENDCS

MAPREDUCE-LIKE?

Process

Reduce

Combine
 COMBINE S1 WITH S2
 ON S1.A==S2.A AND S1.B==S2.B AND S1.C==S2.C

 USING MultiSetDifference

 PRODUCE A, B, C

EXECUTION: COMPILER

SELECT query, COUNT() AS count
FROM "search.log"
USING LogExtractor
GROUP BY query
HAVING count > 1000
ORDER BY count DESC;

Check syntax, resolve names

Checks if columns have been defined

Result: Internal parse tree

OPTIMIZER

Rewrite the query expression à lowest cost

Examples:
 Removing unnecessary columns
 Pushing down selection predicates
 Pre-aggregating

SELECT query, COUNT() AS count
FROM "search.log"
USING LogExtractor
GROUP BY query
HAVING count > 1000
ORDER BY count DESC;

RUNTIME OPTIMIZATIONS

Hierarchical aggregation

Locality-sensitive task placement

SUMMARY, TAKEAWAYS

Relational API
 - Enables rich space of optimizations
 - Easy to use, integration with C#

Scope Execution
 - Compiler to check for errors, generate DAG
 - Optimizer to accelerate queries (static + dynamic)

Precursor to systems like SparkSQL

DISCUSSION
https://forms.gle/D7D1b1g3VoQSJxBQ6

Consider you have a column-oriented data layout on your storage system
(Example below). What are some reasons that a SCOPE query might be
faster than running equivalent MR program?

http://dbmsmusings.blogspot.com/2017/10/apache-arrow-vs-parquet-and-orc-do-we.html

Does SCOPE-like Optimizer help ML workloads? Consider the code in your
Assignment2. What parts of your code would benefit and what parts would not?

NEXT STEPS

Next class: Elastic Data Warehousing with SnowFlake

Project proposals due soon!
Midterm: next week

