GS 744: SCOPE

Shivaram Venkataraman
Spring 2024

ADMINISTRIVIA

- Course Project Proposal: Due soon!

- Midterm details are on Piazza.

- No reviews for Tuesday (Snowflake)!

Applications

SAL: STRUGTURED QUERY LANGUAGE

DATABASE SYSTEMS

Local Client Remote Client
Catalog
Protocols Protocols
Manager

Admission Client Communications Manage

Control
Memory
Query Parsing and Authorization Manager

Query Rewrite
Administration,

Query Optimizer DDL and Utility Monitoring &
Processing Utilities

Dispatch
and Plan Executor
Scheduling

Replication and

Relational Query Processor (Section 4) Loading
Services

Access Methods Buffer Manager
Batch Utilities

Lock Manager Log Manager Shared
Components and

Manager
(Section 2) Transactional Storage Utilities (Section 7)

Process

PROCEDURAL VS. RELATIONAL

lines = sc.textFile(“users")

csv = lines.map(x =>
SELECT COUNT(*)

x.split(¢,’))
i FROM “users”
young = csv.filter(x =>
WHERE age < 21
x(1) < 21)

println(young.count())

SCUPE I»»SCOPE Script

SCOPE Compiler
SELECT query, COUNT (*) k\ P J SCOPE

‘ | Optimizer
AS count | SCOPE Runtime] P
FROM "search.log" s

Cosmos Execution Environment
USING LogExtractor Q

GROUP BY query | Cosmos Storage System
HAVING count > 1000 b -
ORDER BY count DESC; \I

Cosmos 1

SCOPE OPERATORS

Input reading: What is different?

EXTRACT column| :<type>]]|, ...]
FROM <input stream(s) >
USING <Extractor> [(args)]
[HAVING <predicate>]

SQL OPERATORS

Select — read rows that satisfy some predicate

Join — Support for Inner and Outer join

GroupBy — Group by some column
OrderBy — Sorting the output
Aggregations — COUNT, SUM, MAX etc.

LANGUAGE INTEGRATION

R1 = SELECT A+C AS ac, B.Trim() AS Bl
FROM R
WHERE StringOccurs(C,“xyz”) > 2

#CS
public static int StringOccurs(string str, string ptrn) {
int cnt=0; int pos=-1;
while (pos+l < str.Length) {
pos = str.IndexOf (ptrn, pos+tl);
if (pos < 0) break;
cnt++;
}

return cnt;

}
#ENDCS

MAPREDUCE-LIKE?

Process
Reduce

Combine
COMBINE S1 WITH S2
ON S1.A==S2.A AND S1.B==S2.B AND S1.C==S52.C
USING MultiSetDifference
PRODUCE A, B, C

EXECUTION: COMPILER

SELECT query, COUNT() AS count Check syntax, resolve names
FROM "search.log"

USING LogExtractor Checks if columns have been defined
GROUP BY query
HAVING count > 1000 Result: Internal parse tree

ORDER BY count DESC;

OPTIMIZER

Search.log
. . Stages ' '
Rewrite the query expression = lowest cost ges §y v R RA
1 | Extract ... Extract | ' Extract ... Extract |
Examples: \\:\4/// \\\\4///
) 2 ‘ artial Partial
Removing unnecessary columns Agg Agg
3 ' Distribute Distribute

Pushing down selection predicates

Pre-aggregating M

4 | Full Agg Full Agg Full Agg |
5 | Filter Filter Filter |
6 | Sort Sort Sort |

SELECT query, COUNT () AS count

FROM "search.log" \;L/

USING LogExtractor 7 Merge
GROUP BY query 8 Output
HAVING count > 1000 { ‘qcount.result

ORDER BY count DESC;

RUNTIME OPTIMIZATIONS

Hierarchical aggregation

Locality-sensitive task placement

SUMMARY, TAKEAWAYS

Relational API
- Enables rich space of optimizations

- Easy to use, integration with C#
Scope Execution
- Compiler to check for errors, generate DAG

- Optimizer to accelerate queries (static + dynamic)

Precursor to systems like SparkSQL

DISCUSSION

https://forms.gle/D7D | b1 g3VoQS)JxBQ6

Consider you have a column-oriented data layout on your storage system
(Example below). What are some reasons that a SCOPE query might be
faster than running equivalent MR program?

Row Storage Columnar Storage

Last First Street
Name | Name | E-mail | Phone # | Address

Last First Street
Name Name E-mail Phone # Address

http://dbmsmusings.blogspot.com/2017/10/apache-arrow-vs-parquet-and-orc-do-we.html

Does SCOPE-like Optimizer help ML workloads? Consider the code in your
Assignment2. What parts of your code would benefit and what parts would not?

NEXT STEPS

Next class: Elastic Data VWarehousing with SnowFlake

Project proposals due soon!

Midterm: next week

