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ADMINISTRIVIA

- Course Project Proposal: Due soon!

- Midterm details are on Piazza.

- No reviews for Tuesday (Snowflake)!



Applications




SAL: STRUGTURED QUERY LANGUAGE
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PROCEDURAL VS. RELATIONAL

lines = sc.textFile(“users")

csv = lines.map(x =>
SELECT COUNT(*)

x.split(¢,’))
i FROM “users”
young = csv.filter(x =>
WHERE age < 21
x(1) < 21)

println(young.count())



SCUPE I»»SCOPE Script

SCOPE Compiler
SELECT query, COUNT (*) k\ P J SCOPE

‘ | Optimizer
AS count | SCOPE Runtime ] P
FROM "search.log" s

Cosmos Execution Environment
USING LogExtractor Q

GROUP BY query | Cosmos Storage System
HAVING count > 1000 b -
ORDER BY count DESC; \I

Cosmos 1



SCOPE OPERATORS

Input reading: What is different?

EXTRACT column| :<type>]]|, ...]
FROM <input stream(s) >
USING <Extractor> [ (args)]
[ HAVING <predicate>]



SQL OPERATORS

Select — read rows that satisfy some predicate

Join — Support for Inner and Outer join

GroupBy — Group by some column
OrderBy — Sorting the output
Aggregations — COUNT, SUM, MAX etc.



LANGUAGE INTEGRATION

R1 = SELECT A+C AS ac, B.Trim() AS Bl
FROM R
WHERE StringOccurs(C,“xyz”) > 2

#CS
public static int StringOccurs(string str, string ptrn) {
int cnt=0; int pos=-1;
while (pos+l < str.Length) {
pos = str.IndexOf (ptrn, pos+tl);
if (pos < 0) break;
cnt++;
}

return cnt;

}
#ENDCS



MAPREDUCE-LIKE?

Process
Reduce

Combine
COMBINE S1 WITH S2
ON S1.A==S2.A AND S1.B==S2.B AND S1.C==S52.C
USING MultiSetDifference
PRODUCE A, B, C



EXECUTION: COMPILER

SELECT query, COUNT() AS count Check syntax, resolve names
FROM "search.log"

USING LogExtractor Checks if columns have been defined
GROUP BY query
HAVING count > 1000 Result: Internal parse tree

ORDER BY count DESC;



OPTIMIZER

Search.log
. . Stages ' '
Rewrite the query expression = lowest cost ges §y v R RA
1 | Extract ... Extract | ' Extract ...  Extract |
Examples: \\:\4/// \\\\4///
) 2 ‘ artial Partial
Removing unnecessary columns Agg Agg
3 ' Distribute Distribute

Pushing down selection predicates

Pre-aggregating M

4 | Full Agg Full Agg Full Agg |
5 | Filter Filter Filter |
6 |  Sort Sort Sort |

SELECT query, COUNT () AS count

FROM "search.log" \;L/

USING LogExtractor 7  Merge
GROUP BY query 8 Output
HAVING count > 1000 { ‘qcount.result

ORDER BY count DESC;



RUNTIME OPTIMIZATIONS

Hierarchical aggregation

Locality-sensitive task placement



SUMMARY, TAKEAWAYS

Relational API
- Enables rich space of optimizations

- Easy to use, integration with C#
Scope Execution
- Compiler to check for errors, generate DAG

- Optimizer to accelerate queries (static + dynamic)

Precursor to systems like SparkSQL



DISCUSSION

https://forms.gle/D7D | b1 g3VoQS)JxBQ6




Consider you have a column-oriented data layout on your storage system
(Example below). What are some reasons that a SCOPE query might be
faster than running equivalent MR program?

Row Storage Columnar Storage

Last First Street
Name | Name | E-mail | Phone # | Address

Last First Street
Name Name E-mail Phone # Address

http://dbmsmusings.blogspot.com/2017/10/apache-arrow-vs-parquet-and-orc-do-we.html



Does SCOPE-like Optimizer help ML workloads? Consider the code in your
Assignment2. What parts of your code would benefit and what parts would not?



NEXT STEPS

Next class: Elastic Data VWarehousing with SnowFlake

Project proposals due soon!

Midterm: next week



