
CS 744: SPARK STREAMING

Shivaram Venkataraman
Spring 2024

Welcome back !

ADMINISTRIVIA

- Course Projects feedback
- Midterm grades – this week?

- Cloudlab reservations
- Per-user from now

->
Canvas

-> Course Project

↳ only you
will be able to use

that reservation

Scalable Storage Systems

Datacenter Architecture

Resource Management

Computational Engines

Machine Learning SQL Streaming Graph

Applications
- Dataflow

model

↳ how to

express
streaming

queries

Apache Flick

↳ realizes

continuous

operator

DASHBOARDS data continuously over time.
- low latency
- out of order delivery

CONTINUOUS OPERATOR MODEL
Long-lived operators

Distributed Checkpoints
for Fault Recovery

Naiad
Task

Control MessageDriver

Network Transfer

Mutable State

Stragglers ?

read log entries group by
userid

2 ↑ state ->

map mutable
-> -

[-
Algorithm
for
checkpointing

CONTINUOUS OPERATORS
replicate operators

across
modes

↳ more resources to

* support this scheme

-
same

order of
events

to the replica operator

↳ overhead during

processing

SPARK STREAMING: GOALS

1. Scalability to hundreds of nodes

2. Minimal cost beyond base processing (no replication)

3. Second-scale latency

4. Second-scale recovery from faults and stragglers

- high throughput

-

-> time between event arriving & it

↑ -- being reflected in the output

-

DISCRETIZED STREAMS (DSTREAMS)
Could Contain

different
↑ times
-

-~ ProcessingL #T
- time

&, batch
- submit this fr

computation
↳ re-using batch computation

frameworks
↑ a

-

0
-> Save some state

as new input

each batch and use that

input for next batch

EXAMPLE
pageViews =
 readStream(http://...,
 "1s")

ones = pageViews.map(
 event =>(event.url, 1))

counts =
 ones.runningReduce(
 (a, b) => a + b)

Stream API

read input
-
-

↳ batch size shuffle

=
-

Key

aggregate number of

times URL Occurs

DSTREAM API

Transformations
 Stateless: map, reduce, groupBy, join

 Stateful:
 Sliding window(“5s”) à RDDs with data in [0,5), [1,6), [2,7)

 reduceByWindow(“5s”, (a, b) => a + b)

-similar to batch API

do not have dependencies

across time steps

↳ creates a window &

uses this reduction function

SLIDING WINDOW

Add
previous 5
each time

5 seconds duration

&
depend ouprevious

you
have

-dependencies
vs

E

STATE MANAGEMENT

Tracking State: streams of (Key, Event) à (Key, State)

events.track(
 (key, ev) => 1,

 (key, st, ev) => ev == Exit ? null : 1,

 "30s”)

similar in spirit
-

to mutable state

Stream
,

operator
--

in
Flick

L ↑
-

-> Initializa state
- -

Given key ,

prew state,

-
J new

eventS -> Forget nowt state
-

key , event
- what is initial value

↳ examples include event time range / Session Id etc.

STATE MANAGEMENT

Tracking State: streams of (Key, Event) à (Key, State)

events.track(
 (key, ev) => 1,

 (key, st, ev) => ev == Exit ? null : 1,

 "30s”)

Computation requires

Stateless System
manages

operator stateI
state !!

System
VS-

Operator
2
with

maintains helf

checkpoints
state

etc.

SYSTEM IMPLEMENTATION

PollsKathaor
Hs

-

E
-

↓ every batch

Borrow from
-

sparkelementation

OPTIMIZATIONS

Timestep Pipelining
 No barrier across timesteps unless needed
 Tasks from the next timestep scheduled before current finishes

Checkpointing
 Async I/O, as RDDs are immutable
 Truncate lineage after checkpoint

start computation

↑ t = 2 when
t= 1

is still running

simple to

ve I lar
- abe

- lineaga grow

infinitely

C
-

back ground

FAULT TOLERANCE: PARALLEL RECOVERY

Worker failure
 - Need to recompute state RDDs stored on worker
 - Re-execute tasks running on the worker
Strategy
 - Run all independent recovery tasks in parallel
 - Parallelism from partitions in timestep and across timesteps

↳ second scale

- only
need to

- - replay
tasks

- --

on
this

worker

--

- -C worker to run on

↳ tacks running
T

↳ diff machines

4 RDD f time
->

recover each on

State
dif

steps a diff
machine

EXAMPLE
pageViews =
 readStream(http://...,
 "1s")

ones = pageViews.map(
 event =>(event.url, 1))

counts =
 ones.runningReduce(
 (a, b) => a + b)

&
machine

-=L O A

-

- -- L
LS
↳ do not need to

machine 3

be re-run

FAULT TOLERANCE

Straggler Mitigation: Use speculative execution

Driver Recovery
 - At each timestep, save graph of DStreams and Scala function objects
 - Workers connect to a new driver and report their RDD partitions
 - Note: No problem if a given RDD is computed twice (determinism).

replayable input
↳ Kafka

~
r are stateless

- operatos
same

multiple of them

checkpoint driver state Eme

&
--

C
similar to GFS recovery

-

SUMMARY

Micro-batches: New approach to stream processing

Simplifies fault tolerance, straggler mitigation

Unifying batch, streaming analytics

↳ share code

DISCUSSION
https://forms.gle/RVtChgDQzbX16tqT7

If the latency bound was made to 100ms, how do you think the above figure
would change? What could be the reasons for it? what about 10s ?

-> not as

10 ↓
-> Combiners

effectives at

↑ 100 ms

-

- LOS

↳ higher
① 100ms ↓put

put will further 10ms capped at
-

go down ?
1 f some

limit

↳ "Overheads will be J- resource
↳

-> input reading

higher ↑- D I
cluster

↳ scheduling ,

task launch
-

room limits of
Is ->

Consider the pros and cons of approaches in Flink vs Spark Streaming. What
application properties would you use to decide which system to choose?

Flink Spark Streaming

-> checkpoints are more expensive
↳ low latency

↳ unreliable hardware
< second scale

to use

↳ don't want
then not

↳ Flink Spark Streaming

cluster is small
-> streaming join

-> FT is less of
with historical

concern ?
data spark has

advantages

NEXT STEPS

Next class: Graph processing!
Midterm grades soon!

