
CS 744: SPARK STREAMING

Shivaram Venkataraman
Spring 2024

ADMINISTRIVIA

- Course Projects feedback
- Midterm grades – this week?

- Cloudlab reservations
- Per-user from now

Scalable Storage Systems

Datacenter Architecture

Resource Management

Computational Engines

Machine Learning SQL Streaming Graph

Applications

DASHBOARDS

CONTINUOUS OPERATOR MODEL

Long-lived operators

Distributed Checkpoints
for Fault Recovery

Naiad
Task

Control MessageDriver

Network Transfer

Mutable State

Stragglers ?

CONTINUOUS OPERATORS

SPARK STREAMING: GOALS

1. Scalability to hundreds of nodes

2. Minimal cost beyond base processing (no replication)

3. Second-scale latency

4. Second-scale recovery from faults and stragglers

DISCRETIZED STREAMS (DSTREAMS)

EXAMPLE
pageViews =
 readStream(http://...,
 "1s")

ones = pageViews.map(
 event =>(event.url, 1))

counts =
 ones.runningReduce(
 (a, b) => a + b)

http://...

DSTREAM API

Transformations
 Stateless: map, reduce, groupBy, join

 Stateful:
 Sliding window(“5s”) à RDDs with data in [0,5), [1,6), [2,7)

 reduceByWindow(“5s”, (a, b) => a + b)

SLIDING WINDOW

Add
previous 5
each time

STATE MANAGEMENT

Tracking State: streams of (Key, Event) à (Key, State)

events.track(
 (key, ev) => 1,

 (key, st, ev) => ev == Exit ? null : 1,

 "30s”)

SYSTEM IMPLEMENTATION

OPTIMIZATIONS

Timestep Pipelining
 No barrier across timesteps unless needed
 Tasks from the next timestep scheduled before current finishes

Checkpointing
 Async I/O, as RDDs are immutable
 Truncate lineage after checkpoint

FAULT TOLERANCE: PARALLEL RECOVERY

Worker failure
 - Need to recompute state RDDs stored on worker
 - Re-execute tasks running on the worker
Strategy
 - Run all independent recovery tasks in parallel
 - Parallelism from partitions in timestep and across timesteps

EXAMPLE
pageViews =
 readStream(http://...,
 "1s")

ones = pageViews.map(
 event =>(event.url, 1))

counts =
 ones.runningReduce(
 (a, b) => a + b)

http://...

FAULT TOLERANCE

Straggler Mitigation: Use speculative execution

Driver Recovery
 - At each timestep, save graph of DStreams and Scala function objects
 - Workers connect to a new driver and report their RDD partitions
 - Note: No problem if a given RDD is computed twice (determinism).

SUMMARY

Micro-batches: New approach to stream processing

Simplifies fault tolerance, straggler mitigation

Unifying batch, streaming analytics

DISCUSSION
https://forms.gle/RVtChgDQzbX16tqT7

If the latency bound was made to 100ms, how do you think the above figure
would change? What could be the reasons for it?

Consider the pros and cons of approaches in Flink vs Spark Streaming. What
application properties would you use to decide which system to choose?

NEXT STEPS

Next class: Graph processing!
Midterm grades soon!

