Welcome back!!

CS 744: TPU

Shivaram Venkataraman Spring 2024

ADMINISTRIVIA

Midterm 2, April 25th

- Papers from SCOPE to HeMem
- Similar format as first midterm
- Details on Piazza sample

~ Similar count

mid terms

Poster session: May 2nd

- More details soon

MOTIVATION

Goal: Improve cost-performance by IOx over GPUs ~K404 / K804

. r.L	yrrs			WORKLOAD ~ ML inference								
had per to and com	mte	hor Cor a	o m byte hate	e for of (mode	r L wei	puts)		om	odel size		90'1. not CNN models	
Name	LOC	FC	Conv	Layers Vector	Pool	Total	Nonlinear function	Weights	TPU Ops / Weight Byte	TPU Batch Size	% of Deployed TPUs in July 2016	
MLP0	100	5				5	ReLU	20M	200	200	4 610/	
MLP1	1000	4				4	ReLU	(5M)	168	168	01%	
LSTM0	1000	24		34		58	sigmoid, tanh	52M	64	64	20%	
LSTM1	1500	37		19		56	sigmoid, tanh	34M	96	96		
CNN0	1000		16			16	ReLU	8M	2888	8	5%	
CNN1	1000	4	72		13	89	ReLU	100M	1750	32	570	

Larger & LLMS ~GBS

DNN: RankBrain, LSTM: subset of GNM Translate CNNs: Inception, DeepMind AlphaGo

WORKLOAD: ML INFERNCE representation of weights to integers

Quantization \rightarrow Lower precision, energy use

-> Goal: Perf/watt

8-bit integer multiplies (unlike training), 6X less energy and 6X less area

-> Need for predictable latency and not throughput e.g., 7ms at 99th percentile InFaaS - Sto satisfaction rate Aardware plage a key role

INSTRUCTIONS

CISC format (why ?)

specialized with Complex instructions

- I. Read_Host_Memory_input
- 2. Read_Weights
- 3. MatrixMultiply/Convolve
- 4. Activate
- 5. Write_Host_Memory Loutput

many ups to do to this instruction run handful of layers Minimize host to device

SYSTOLIC EXECUTION

Problem: Reading a large SRAM uses much more power than arithmetic!

COMPARISON WITH CPU, GPU

	Die										
Model		10.100	MII-	מחד	Меа	sured	TOF	PS/s	CP/a	On-Chip	
	mm	nm	ΜΠζ	IDF	Idle	Busy	<u>8b</u>	FP	GD/S	Memory	
Haswell E5-2699 v3	662	22	2300	145W	41W	145W	2.6	1.3	51	51 MiB	
NVIDIA K80 (2 dies/card)	561	28	560	150W	25W	98W		2.8	160	8 MiB	
TPU	<331*	28	700	75W	28W	40W	92		34	28 MiB	
					So-/ bette juan	er GPU	8-bit intege	-	5 ho me	en unified buffer	

SELECTED LESSONS

predictable

- Latency more important than throughput for inference
- LSTMs and MLPs are more common than CNNs -> Surprising in 2016
- Performance counters are helpful
- Remember architecture history Systolic arrays

SUMMARY

New workloads \rightarrow new hardware requirements

Domain specific design (understand workloads!) No features to improve the average case No caches, branch prediction, out-of-order execution etc. Simple design with MACs, Unified Buffer gives efficiency

Drawbacks

No sparse support, training support (TPU v2, v3) Vendor specific ?

DISCUSSION

https://forms.gle/P7mZsfK44PemjkXa7

		1 ms SL	0				
		A					
Туре	Batch	99th% Response	Inf/s (IPS)	% Max IPS			
CPU	(16)	7.2 ms	5,482	42%			
CPU	64	21.3 ms	13,194	100%			
GPU	16-	6.7 ms	13,461	37%			
GPU	64	8.3 ms	36,465	100%			
TPU	.200	7.0 ms	225,000	80%			
TPU	250	10.0 ms 🔨	280,000	100%)			
	(> slightly	ligher			
	afle to	X ph	than GPU Ratercy W				
	Suppor	halo	(J.S.	100 %			
	larger	Mine					

How would TPUs impact serving frameworks like INFaaS? What specific effects it could have on distributed serving systems architecture

As you add more hardware types la reed more profiling deta TPUS -> quantization La maintain more model variants Sharing TPU might be tricky Coarne grained lomp. Units - Additional need for software maps from PyTorch ITPU

NEXT STEPS

Next week schedule

Tue: HeMem Thu: Midterm 2