Hello!

CS 744: JUST-IN-TIME CHECKPOINTING

Shivaram Venkataraman Spring 2025

ADMINISTRIVIA

Assignment 2 is due TODAY

Project Preference form due Monday (17th)

٢	3D PARALLELISM, ALPA	herallelism				
/	Data S Model (Pipeline) Tensor	porizontal	с	= A	- 7	В
	Inter-op Pass			Non-distribu	uted	weights
Compiler	Intra-op Pass Intr	comm intensive	C I	= A	x	в
	Intra-op Parallelism Device Mesh 1 Device Mesh 2 Device Mesh N	allygather along column	*			
Runtime	Worker D0 D1 D2 D3 Worker D0 D1 D2 D3	all gather	, c.	= A	x	В
	- & GPV3	C1 C2	Colum	nn-Splitting Tens	sor Par	rallel
	$= 2 \times 2 \times 2 = 8 \times 1$ DP PP TP		Tensor para	allel illustration		

ERROR FREQUENCIES

2 errors

Error type	F	Ν			
ECC errors	16	31			
NCCL errors	12	33			
CUDA errors	9	9			
GPU lost errors	15	17			
infoROM errors	9	19			
Other GPU failures	7	10			
TB errors	6	10			
'Software bugs	9	9			
Other	16	17			
> infiband errors					

OPT 175B Training Error Counts

https://github.com/facebookresearch/metaseg/b lob/main/projects/OPT/chronicles/OPT175B_L ogbook.pdf

larger models -> more GPVs more machines larger datasets -> longer training = months

CHECK-POINTING BASED FAULT TOLERANCE

CHALLENGES?

How do we know when a failure happens? La anytime replicas -> all_reduce call. How do we get access to GPU state? User-level \longrightarrow save _ ckpt Transparent \longrightarrow wer code is un modified

USER-LEVEL JIT CHECKPOINTING

I. In each rank, detect hangs during AllReduce

Timeout cudaEvent Le mark the AR as watch dog Complete floread

- 2. Healthy ranks checkpoint state
- 3. Restart the job
- 4. Load the relevant checkpoint

USER-LEVEL JIT CHECKPOINTING ring reduce

11.1.10.1

2. Healthy ranks checkpoint state Release GIL, Memcpy stream

4. Load the relevant checkpoint Iteration i vs. i + 1

TRANSPARENT JIT CHECKPOINT

No changes to user code

Goal: Prevent errors from crashing PyTorch process

Build a proxy server

TRANSPARENT JIT CHECKPOINT

Steady State Work

Log all CUDA / NCCL APIS Replay log - Redo logging

Clear log every mini-batch hooks in PyTorch nccl AllRebuce alls

Validate the log periodically

TRANSPARENT JIT CHECKPOINT

Recovery Work – GPU/Network error

Catch error in the Device API PyTorch/ML framework unaware!

Iteration i vs. i + 1

RECOVERING FROM GPU FAILURES

replay the state from other ranks log - all reduce Cell

Take a consistent checkpoint of CPU state (all processes!)

CRIU on Linux CRIU on Linux Checkpointing library - file VM migration Restore GPU buffers from checkpoint (of other ranks) L blank GPU initialization

more to a diff without user code knowing about it!

SUMMARY

Checkpointing based approach for DNN fault tolerance

Mitigate overheads with just-in-time checkpoints

User-based and transparent approaches

DISCUSSION

https://forms.gle/QZh1zRC1TVbugwAx7

Model	#Params(B)	#GPUs	Parallelism	Framework	
GPT2-S	0.124B	4xA100	4D	Megatron-DS	
GPT2-S-3D	0.124B	8xV100	2D-2P-2T	Megatron-DS	
GPT2-XL	1.5B	8xV100	2D-2P-2T	Megatron-DS	
GPT2-8B	8.3B	2x(8xV100)	2D-4P-2T	Megatron-DS	
GPT2-18B	18B	4x(8xV100)	2D-4P-4T	Megatron-DS	
BERT-L-PT	0.334B	8xV100	8D)	Megatron	
BERT-B-FT	0.110B	8xV100	8D	Hugging Face	
T5-3B	3B	2x(4xA100)	FSDP	PyTorch	
ViT	0.632	8xV100	8D	PyTorch	
PyramidNet	0.24B	4xA100	4D	PyTorch	

Table 2. Experimental workloads used for evaluation. PT=Pre-training, FT=Fine-tuning, DS=DeepSpeed. For parallelism, 2D-4P-2T means 2-way Data-parallel, 4-way Pipeline-Vinited not flushing?? Bigger models suffer Vinited not flushing?? Bigger models suffer periodic clepts parallel, 2-way Tensor-parallel. For GPUs, 2x(&xV100) means 2 nodes of 8 V100s each.

rencoder de coder

	Model	PC_disk	PC_mem	CheckFreq	PC_1/day	JIT-C
	GPT2-S ·	0.042	0.042	0.024	0.004	0.0024
	GPT2-XL	0.093	0.078	0.047	0.007	0
	GPT2-8B	0.216	0.186	0.111	0.02	0
	GPT2-18B	0.330	0.275	0.166	0.02	0
	BERT-L-	0.07	0.068	0.031	0.005	0.0076
_	PT					
	BERT-B-	0.039	0.036	0.026	0.0016	0
	FT	L				

Table 3. Checkpointing overhead percentages for Periodic Checkpointing baselines, assuming optimal checkpointing frequency, compared to JIT-Checkpointing (JIT-C)

Project ideas / Anybody looking for projects?

NEXT STEPS

Next class: LLM Inference

Project Preference form