CS 744: PIPEDREAM

Shivaram Venkataraman
Spring 2025

ADMINISTRIVIA

repor s
Assignment 2 is due on 2/13 ~

Project Proposal (2 pages) — ©2-3

Introduction — L
that 3 W AWE o
Related Work b o
Timeline (with eval plan) vt
"

WRITING AN INTROBUCTION

p. hlo~
|-2 paras: what is the problem you are solving MatZ

wms it important (need citations)
|-2 paras: How other people solve and why they fall short

L volated —work

|-2 paras: How do you plan on solving it and why your approach
is better [,

| para: Anticipated results or what experiments you will use

\
TRV A abdde g ot

RELATED WORK, EVAL PLAN

Group related work into 2 or 3 buckets (1-2 para per bucket)
Explain what the papers / projects do
Why are they different / insufficient

Eval Plan

Describe what datasets, hardware you will use
Available: Cloudlab, Google Cloud (~$150), Jetson TX2 etc.

LIMITATIONS OF DATA PARALLEL

ove)
"~ crv - —=— GNMT-16
o(ﬁw'“”/a poo ’ S £ 100
=S g0 — 9
(ntreses — EE 60
S8
. 80 <
T L brer B2 05T 8 16)
PRI 22) Number of GPUs
(e -l v 8xV/100s with NVLink (AWS)
T :
ko el o oM -1b PyTorch + NCCL 2.4
% - ka “fraction of training time spent
L> ev WY Corrt
1[”’1 @ in communication stalls”
'__——v
7/ <« l/__,:l

MODEL PARALLEL TRAINING

(?0\«,, L’\ke"\ ‘WL V\/VOO(@}

EY
%

3

PR
-

s bk
. M(\M”J’Q{

ONCYD AL
W ovhev4

Worker 4

Worker 1 Worker 2 Worker 3

\\\\\ \

%~ 77

7 A
7,77

,\\\\\

N Idle

Output stage

/

N/ N\ [/ N\ [/ \

«

. M
>

Lz

N

L4
Y

Input

1

wlf
LMQD
—) I~

et g%+ — PIPELINE PARALLEL

Lokehes
— \ C}"% it S\'\'
k /Vf‘*k ok ’F‘ R?CM W‘q A/(ﬂ.},
NI

L‘) YM_QA:" Lﬁme,f; L&/ Worker 1 , \%& \\§§ 1§
] Worker 2 - \& \ 1\ 1 &\
,FYD'W\ M Worker 3 &\& 1(1 & 2|2
Worker 4 &\\& 1(1 2 3

(mery Cormr)

Startup State Steady State

Advantages? Time g
. . B Forward Pass [| Backward Pass RN\ ldle
rwnllﬂvwg —
)P**a [NWA?/ SCJAZJMLC oor A 4 wor

CHALLENGE 1: WORK PARTITIONING ~ ~ T
it NOAOHO/%D "
Goal: Balanced stages in the pipeline.Why? T Wl W2
Steady state throughput is the throughput of the slowest stage

Stages can be replicated! Ex: Two stage pipeline, but first stage is replicated

> worker:r TREEY [[P snn7 7““9 9
b o + Replicated .

stages worke'2 IR \\‘

B Forward Pass | | Backward Pass NNNN\N\Y Idle

WORK PARITIONING

Profiler: computation time for forward, backward for each layer

size of output activations, gradients (network transfer)

size of parameters (memory)
pardi==

Dynamic programming algorithm
Intuition: Find optimal partitions within a server,

Then find best split across servers using that

CHALLENGE 2: WORK SCHEDULING

(,J Yh-e—y ‘kcj:voj;\o«\

—> Jpwﬂfveaw\
Traditional data parallel D 4 (b;)
forward iter(i) &84 b C'L)

backward iter(i) “MYQW .
forward iter(i+1) 8
bufher o

d;va,!Zows 2

par III

OOOOO

Pipeline parallel:Worker can

Jg La)fvww(

Forward pass to push to downstream

Backward pass to push to upstream

CHALLENGE 2: WORK SCHEDULING L
fud b

Num active batches ~= num_workers / num_replicas_input Q B
7
grns

Schedule one-forward-one-backward (I FIB) —Worker 3

—_—

Round-robin for replicated stages > Worker 2

same worker for fwd, backward

| e
‘(/&""’/ M {!M:rkeﬂ 1 1 3 3k
W Replicated ,

a(%y e stages

o e S
pt WO Worker 3

B Forward Pass | | Backward Pass N\NN\Y Idle

CHALLENGE 3: EFFECTIVE LEARNING

N " M |
—> JJFF wodedl versons pame botth - /J‘_Q,a‘ //95>
.o . o o Qk 0‘/\# Wo—(myé
Naive pipelining
— Different model versions forward and backward \ _ R
O‘t M /)M Wo’w/ézy

W - wv'j]u” \
Worker 1 ' \

W
L, Worker2

w} Worker 3

" Worker 4

4

Startup Steady State
. > / pnoy
Time

I Forward Pass [| Backward Pass NN\\Y ldle - wt‘, W),

CHALLENGE 3: EFFECTIVE LEARNING

Weight stashing

\
Maintain multiple versions of the weights
" One per active mini-batch

Per-worker buffers:
Weight versions

0 DSy
Yorkerz § 1(2(% 4 §n§ = 7 B 8 [szllwz Iwz J

worker 1 [ERIPMERIFENNN

Use latest version for forward pass. | workers \\{HENEN ' € ﬂ?§ﬂ s n H ' DRI
Worker 4 5 w®
Retrieve for backward 3000 T

Forward Backward
No guarantees across stages! p— —

RN
Pass Pass A ldle

WSQ,OX Ve vA N i ’FQ?
bat

STALENESS, MEMORY OVERHEAD

How to avoid staleness: o e M&‘VQLM
Vertical sync — 7 r

Memory overhead
Similar to data parallel?

K_) LI\C'YW o

SUMMARY

Pipeline parallelism: Combine inter-batch and intra-batch
Partitioning: Replication, dynamic programming
Scheduling: |FIB

Weight management: Stashing, vertical sync

DISCUSSION

https://forms.gle/A2Kium67PBT8uHeTA

o b sarve® List two takeaways from the following table rr{,fy‘/: Cal-d
o A W /\ /
Model Name Model Size GPUs PipeDrea Speedup over
(#Servers x Config DataParallel
#GPUs/Server) (Epch—'ﬁq\e)
Resnet-50 97MB 4x4 I6 , ! I
— 2x8 | x
VGG-16 528MB (4x4 5.28x
2x8 I 2.98x
/[
GNMT-8 |.1GB 3x4 Stralght J
2x8
)
%4

XM&

What are some other workload scenarios (e.g. things we discussed for MapReduce or
Spark) that could use similar ideas of pipelined parallelism? Develop such one example
and its execution

B (;feﬂ»’”’j fre shuftle
Ma

Y G
e

Compiler

Runtime

30 PARALLELISM, ALPA

Inter-op Pass
Intra-op Pass

Runtime
Orchestration

Mesh Executable 1

Computational g g
Graph

¢

Device E=H
ERA

Cluster .21
)

Y

¥
Stage 1 O Stage 2 [% Stage N %
& 4 Y
Sharded Sharded | Sharded
Stage 1 Stage 2 Stage N
& Y &

Mesh Executable 2

Mesh Executable N

Device Mesh 1

Device Mesh 2

Device Mesh N

|Worker |

|Worker |

|Worker I Devices ... ||

|Worker I‘_

|Worker I

|Worker | Devices ... ||

.

)

v
Inter-op Parallelism

/ C

all-gather

along column

™

Non-distributed

C =

Column-Splitting Tensor Parallel

Tensor parallel illustration

NEXT STEPS

Next class: More LLMs!

Work on Assignment 2!

