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WRITING AN INTROBUCTION

p. hlo~
|-2 paras: what is the problem you are solving MatZ

wms it important (need citations)
|-2 paras: How other people solve and why they fall short

L volated —work

|-2 paras: How do you plan on solving it and why your approach
is better [,

| para:  Anticipated results or what experiments you will use
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RELATED WORK, EVAL PLAN

Group related work into 2 or 3 buckets (1-2 para per bucket)
Explain what the papers / projects do
Why are they different / insufficient

Eval Plan

Describe what datasets, hardware you will use
Available: Cloudlab, Google Cloud (~$150), Jetson TX2 etc.



LIMITATIONS OF DATA PARALLEL
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MODEL PARALLEL TRAINING
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et g%+ — PIPELINE PARALLEL
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CHALLENGE 1: WORK PARTITIONING ~ ~ T
it NOAOHO/%D "
Goal: Balanced stages in the pipeline.Why? T Wl W2
Steady state throughput is the throughput of the slowest stage

Stages can be replicated! Ex: Two stage pipeline, but first stage is replicated
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WORK PARITIONING

Profiler: computation time for forward, backward for each layer

size of output activations, gradients (network transfer)

size of parameters (memory)
pardi==

Dynamic programming algorithm
Intuition: Find optimal partitions within a server,

Then find best split across servers using that



CHALLENGE 2: WORK SCHEDULING
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CHALLENGE 2: WORK SCHEDULING L
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CHALLENGE 3: EFFECTIVE LEARNING
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CHALLENGE 3: EFFECTIVE LEARNING

Weight stashing

\
Maintain multiple versions of the weights
" One per active mini-batch

Per-worker buffers:
Weight versions
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STALENESS, MEMORY OVERHEAD

How to avoid staleness: o e M&‘VQLM
Vertical sync — 7 r

Memory overhead
Similar to data parallel?
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SUMMARY

Pipeline parallelism: Combine inter-batch and intra-batch
Partitioning: Replication, dynamic programming
Scheduling: |FIB

Weight management: Stashing, vertical sync



DISCUSSION

https://forms.gle/A2Kium67PBT8uHeTA




o b sarve® List two takeaways from the following table rr{,fy‘/: Cal-d
o A W /\ /
Model Name Model Size GPUs PipeDrea Speedup over
(#Servers x Config DataParallel
#GPUs/Server) (Epch—'ﬁq\e)
Resnet-50 97MB 4x4 I6 , ! I
— 2x8 | x
VGG-16 528MB (4x4 5.28x
2x8 I 2.98x
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What are some other workload scenarios (e.g. things we discussed for MapReduce or
Spark) that could use similar ideas of pipelined parallelism? Develop such one example
and its execution
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NEXT STEPS

Next class: More LLMs!

Work on Assignment 2!



