
CS 744: PIPEDREAM

Shivaram Venkataraman
Spring 2025

Welcome back !

ADMINISTRIVIA

Assignment 2 is due on 2/13

Project Proposal (2 pages)
 Introduction
 Related Work
 Timeline (with eval plan)

- report

-> ~2-3 pages

-> What is it that your

want to do

↳ metrics
,

datasets

need
machines that your

WRITING AN INTRODUCTION

1-2 paras: what is the problem you are solving
 why is it important (need citations)
1-2 paras: How other people solve and why they fall short

1-2 paras: How do you plan on solving it and why your approach
 is better

1 para: Anticipated results or what experiments you will use

-
Problem

statement
-

↳ related work

I - > Plan
-

↳
change for final report Tralidate

your approach

RELATED WORK, EVAL PLAN

Group related work into 2 or 3 buckets (1-2 para per bucket)
Explain what the papers / projects do
Why are they different / insufficient

Eval Plan
 Describe what datasets, hardware you will use
 Available: Cloudlab, Google Cloud (~$150), Jetson TX2 etc.

~ 8-9 prior

papers
or projects

that you summarize

LIMITATIONS OF DATA PARALLEL

“fraction of training time spent
in communication stalls”

- eval

comm coste tend to DDP -
T

dominate as num GPVs

increases

7
↑

&

O

-
These jumps are not line

98 - 16 ve . 16 -32)

- -

->
cornets ve . van or armi-1d

Comp↳ fewer weights
- Ex--#

-/// -

F

MODEL PARALLEL TRAINING
Partition the model across minbatch updatemodel

workers

↑
number

+
batch

① Mem I
- 32

reg 54 YS

- ↑ -

-

② CommM

independent !of num
- -

1 2 S (4 , 5)
workers backward pass for

Fund - activations

-
Bod ③ Idle boxes mb 1

C

gradients

PIPELINE parallel

Advantages?

Instead of 1 input ->
batches

-> h input batches first stage

GE
second stage

⑧↳ retain benefits i O

from MP

O
(memory ,

Comm)

Better utilization from-
Partitioning -

pipe living Schedule work at a worker

Accuracy ??

CHALLENGE 1: WORK PARTITIONING

Goal: Balanced stages in the pipeline. Why?
 Steady state throughput is the throughput of the slowest stage

Stages can be replicated! Ex: Two stage pipeline, but first stage is replicated

~ Time
-

Time
&

i

i:& ---

W2

-

-

generalizes
be = 32

16

data+ 16
↑

model
&

parallelism 32

WORK PARITIONING

Profiler: computation time for forward, backward for each layer
 size of output activations, gradients (network transfer)
 size of parameters (memory)

Dynamic programming algorithm
Intuition: Find optimal partitions within a server,
 Then find best split across servers using that

--

- -

-

CHALLENGE 2: WORK SCHEDULING

Traditional data parallel
 forward iter(i)
 backward iter(i)
 forward iter(i+1)
 …

Pipeline parallel: Worker can
 Forward pass to push to downstream
 Backward pass to push to upstream

Worker activation

+ (bi) - downstream

< grad B(bj)
upstream
-C

buffer
activations
which need

to be processed

CHALLENGE 2: WORK SCHEDULING

Num active batches ~= num_workers / num_replicas_input

Schedule one-forward-one-backward (1F1B) – Worker 3

Round-robin for replicated stages à Worker 2
 same worker for fwd, backward

fund bad

quere
- - lot

- bad food bod fund
L

for
thisrub ↑ e

- -&activations j- > ->
O

are
on
the

worker

CHALLENGE 3: EFFECTIVE LEARNING

Naïve pipelining
Different model versions forward and backward

5

-> diff model

~
versions same batch (w , ll

at diff

at the same worker I

T

M -
--> usingwe und

Wi ↑
wi

w : weights o pass

Wy -w
WL &

7wy

- I 111

We wa

CHALLENGE 3: EFFECTIVE LEARNING

Weight stashing
 Maintain multiple versions of the weights
 One per active mini-batch

Use latest version for forward pass.

Retrieve for backward
No guarantees across stages!

can
be equal to mum

workers ?

117

Wi

97 - t
a - -

S

E

DDI Y ODDD

used version
1 for

batch

STALENESS, Memory oVERHEAD

How to avoid staleness:
 Vertical sync

Memory overhead
 Similar to data parallel?

->
when you

send activations

include model version

number used so far

↳
increases men requirement

SUMMARY

Pipeline parallelism: Combine inter-batch and intra-batch
Partitioning: Replication, dynamic programming
Scheduling: 1F1B
Weight management: Stashing, vertical sync

DISCUSSION
https://forms.gle/A2Kium67PBT8uHeTA

Model Name Model Size GPUs
(#Servers x

#GPUs/Server)

PipeDream
Config

Speedup over
DataParallel
(Epoch Time)

Resnet-50 97MB 4x4
2x8

16
16

1×
1x

VGG-16 528MB 4x4
2x8

15-1
15-1

5.28x
2.98x

GNMT-8 1.1GB 3x4
2x8

Straight
16

2.95x
1x

List two takeaways from the following table
for

Vah

more servers

=> higher spreduts

preplicated
- O O O

O OO
S O

2
idle

What are some other workload scenarios (e.g. things we discussed for MapReduce or
Spark) that could use similar ideas of pipelined parallelism? Develop such one example
and its execution

-> Pipelining the shuffle ?

Transcoding video

map IImagin
? Autoregr
a

example
↳ match O

local sorte Page Rank fetch incoming
Pipelining 8
approach Agg BeesI updatingI son are D scores

3d parallelism, ALPA

NEXT STEPS

Next class: More LLMs!

Work on Assignment 2!

