
BLINK: FAST AND GENERIC COLLECTIVES FOR DISTRIBUTED ML

Guanhua Wang 1 Shivaram Venkataraman 2 Amar Phanishayee 3 Jorgen Thelin 3 Nikhil Devanur 3 Ion Stoica 1

ABSTRACT
Model parameter synchronization across GPUs introduces high overheads for data-parallel training at scale.
Existing parameter synchronization protocols cannot effectively leverage available network resources in the face of
ever increasing hardware heterogeneity. To address this, we propose Blink, a collective communication library
that dynamically generates optimal communication primitives by packing spanning trees. We propose techniques
to minimize the number of trees generated and extend Blink to leverage heterogeneous communication channels
for faster data transfers. Evaluations show that compared to the state-of-the-art (NCCL), Blink can achieve up to
8× faster model synchronization, and reduce end-to-end training time for image classification tasks by up to 40%.

1 INTRODUCTION

Large high-quality datasets and massive compute clusters
have enabled machine learning algorithms, such as Deep
Neural Networks (DNNs), to tackle hard problems in a
number of domains including image classification, object
detection, machine translation, and speech processing. Mod-
els developed for such tasks can take a long time to train;
for example, models for image classification tasks (Rus-
sakovsky et al., 2015) can often take days or even weeks
to train on a single GPU. Thus, fast training of large deep
learning models requires distributed training on many GPUs.
The most widely used method for reducing DNN training
time is to perform data-parallel training (Abadi et al., 2016;
Goyal et al., 2017). In data-parallel training, each GPU has
a full copy of the model parameters and GPUs frequently
exchange parameters with other GPUs involved in training.

Parameter synchronization across GPUs introduces signifi-
cant overheads when training at scale with communication
overheads that can range from 50% to 90% for popular ML
models (Narayanan et al., 2019). This problem is accentu-
ated by the fact that GPU computation is getting faster and
model sizes are growing larger, thus making communication
overheads stand out. But two recent trends seem to suggest
that their arrival might alleviate, or even eliminate, such
communication bottlenecks for DNN training. First, on
the hardware front, state-of-the-art multi-GPU servers, like
NVIDIA’s DGX-1 and DGX-2, now have fast interconnects
between GPUs – NVLink offers 20-25GBps pairwise and bi-
directional peak throughput (NVLink; NVSwitch). Second,

1University of California, Berkeley 2University of Wisconsin,
Madison 3Microsoft Research. Correspondence to: Guanhua Wang
<guanhua@cs.berkeley.edu>.

Proceedings of the 3 rd MLSys Conference, Austin, TX, USA,
2020. Copyright 2020 by the author(s).

modern communication libraries such as NVIDIA’s Col-
lective Communications Library (NCCL) (Jeaugey, 2017),
Uber’s Horovod (Sergeev & Balso, 2018), and Baidu’s
Ring AllReduce (Ng, 2017), with techniques such as wait-
free backpropagation designed to hide communication over-
heads (Zhang et al., 2017), are solutions specifically targeted
at speeding up parameter synchronization.

In this paper, we focus on multi-GPU servers with
NVLink/NVSwitch and find that despite recent advances,
modern communication libraries for parameter exchange are
unable to fully mitigate communication bottlenecks in data-
parallel training. The central hurdle in achieving peak per-
formance for inter-GPU collectives is link under-utilization
due to topology heterogeneity. We find this occurs due to
two main reasons:

First, topology heterogeneity can occur due to differing
server configurations. Fig. 1 shows an example of two gen-
erations of servers, the DGX-1-P100 (DGX-1P) and DGX-
1-V100 (DGX-1V), and their NVLink topologies. Protocols
have to be topology aware to effectively use hardware.

Second, schedulers that allocate GPUs to jobs, especially in
multi-tenant clusters, are oblivious to interconnect topolo-
gies between GPUs. Many jobs can potentially be co-
located on the same machine. Furthermore, even topol-
ogy aware schedulers must embrace fragmentation to avoid
queuing delays (e.g., a 8-GPU job might have to contend
with 3 GPUs on one machine and 5 GPUs on another) (Jeon
et al., 2018). In an analysis of over 40,000 multi-GPU
jobs over a three month period on a multi-tenant cluster at
Cloud-X (Figure 2), we find that it is common for jobs to
be allocated 3, 5, 6, or 7 GPUs on individual 8-GPU servers
despite multi-GPU jobs overwhelmingly requesting GPUs
in powers of 2. While, fragmentation can be mitigated, not
avoided, by making schedulers topology aware and capable

Blink: Fast and Generic Collectives for Distributed ML

GPU3 GPU0

GPU2 GPU1

GPU4 GPU7

GPU5 GPU6

GPU4 GPU7

GPU5 GPU6

Figure 1. Hybrid mesh-cube topology of NVLink in the DGX-1
8-GPU server. Solid lines here indicate the bi-directional NVLinks
on the DGX-1-P100, red dashed-lines are the additional NVLinks
in DGX-1-V100 servers. NVLink Gen1 has bi-directional pairwise
throughput of 18-20GB/s (DGX-1-P100); Gen2 goes up to 22-
25GB/s (DGX-1-V100).

of migration (Xiao et al., 2018), such solutions face a higher
barrier of entry as there are many independent scheduling
frameworks that all need to be changed and not all jobs can
be placed appropriately given variable arrival rates.

The resulting topology heterogeneity caused by scheduler
allocation can result in link under-utilization in current
ring-based protocols for parameter exchange. For exam-
ple, in Figure 3, NCCL is unable to utilize the bi-directional
NVLinks between the 3-GPUs; the lack of NVLink be-
tween GPUs 1 and 4 prevents NCCL from constructing
NVLink-only rings and it has to fall back on PCIe based
communication. But link under-utilization can also occur
even when rings can be constructed using NVLink. Figure 4
shows a 6 GPU allocation on a DGX-1P, where despite
being able to construct two NVLink-based rings, NCCL has
to drop some of the links connecting the GPUs as they don’t
contribute to ring construction.

Contributions. In this paper, we propose Blink, a com-
munication library for inter-GPU parameter exchange that
achieves near-optimal link utilization. To handle topology
heterogeneity from hardware generations or partial alloca-
tions from cluster schedulers, Blink dynamically gener-
ates optimal communication primitives for a given topology.
Blink probes the set of links available for a given job
at runtime and builds a topology with appropriate link ca-
pacities. Given the topology, Blink achieves the optimal
communication rate by packing spanning trees, that can
utilize more links (Lovasz, 1976; Edmonds, 1973) when
compared to rings. We use a multiplicative-weight update
based approximation algorithm to quickly compute the max-
imal packing and extend the algorithm to further minimize
the number of trees generated. We also describe how this
scheme can handle one-to-many primitives like Broadcast or
Gather and how we can extend this to many-to-many primi-
tives like AllReduce using bi-directional links and hardware
capability to compute at line rate. Blink’s collectives
extend across multiple machines effectively utilizing all
available network interfaces.

Based on the spanning trees chosen, Blink dynamically

0%
5%
10%
15%
20%
25%

2 3 4 5 6 7 8

Pe
rc

en
ta

ge
 o

f
M

ul
ti-

G
PU

 jo
bs

of GPUs

Figure 2. Number of GPUs within
each 8-GPU server allocated to
40,000 multi-GPU jobs

Th
ro

ug
hp

ut
(G

B/
s)

NVLink 26.4
GPU1

GPU0

4.8

GPU4

PCIe

NCCL2 Blink

Figure 3. Broadcast
throughput (partially-
connected GPUs)

generates code to implement common collective primitives.
Our generated code automatically chunks data and uses
CUDA streams to efficiently pipeline transfer and computa-
tion. From the programmer’s perspective, Blink provides
NCCL-compatible API. It can be seamlessly plugged into
distributed ML frameworks like TensorFlow (Abadi et al.,
2016), PyTorch (Paszke et al., 2017), etc. Blink does
not requires user program modifications and only relies on
preloading (LD PRELOAD).

We evaluate Blink’s performance on a number of multi-
GPU platforms including DGX-1P, and DGX-1V and DGX-
2 (dgx2). Results show that, compared with NCCL, on
DGX-1V, Blink achieves up to 6× speed-up in all-to-
one/one-to-all collective communications (e.g. Broadcast,
Gather), and is up to 8× faster in all-to-all collective commu-
nications (e.g. AllReduce). On DGX-2, we show that single-
hop trees in Blink are especially effective for smaller data
sizes offering up to 3x lower latency and higher throughput,
compared to NCCL’s double-binary trees and rings (NCCL
2.4). Finally, we also find that Blink can accelerate DNNs
training on single and multi-machine setups. For instance,
on a single DGX-1V machine, compared to NCCL, Blink
can reduce communication cost up to 87% (51% on av-
erage), and speeds up end-to-end training by up to 40%.

2 MOTIVATION
In this section, we first discuss the need for more efficient
communication primitives and why ring-based solutions like
NCCL cannot handle topology heterogeneity. We highlight
the case for spanning tree-based protocols and the need
to pack trees to achieve peak performance in the face of
topology heterogeneity. We then present micro-benchmarks
characterizing the capabilities of modern GPU hardware
that helps guide Blink’s design.
2.1 The case for packing trees
The motivation for our work stems from the high communi-
cation overheads experienced by deep learning workloads
when running data-parallel training even on fast multi-GPU
servers like the NVIDIA DGX-1 (Narayanan et al., 2019).
These overheads occur despite setting per-GPU minibatch
sizes to the largest values that fit in GPU memory, using
state of the art libraries like NCCL, and using optimizations
common in modern frameworks such as Wait-free Backprop-
agation (Zhang et al., 2017). Communication overheads

Blink: Fast and Generic Collectives for Distributed ML

GPU3 GPU0

GPU1

GPU4 GPU7

GPU5

(a) 6-GPU group topology

GPU3 GPU0

GPU1

GPU4 GPU7

GPU5

GPU3 GPU0

GPU1

GPU4 GPU7

GPU5

(b) NCCL rings. Links between GPU 1&3, 5&7, and 0&4 are unused.

GPU3 GPU0

GPU1

GPU4 GPU7

GPU5

GPU3 GPU0

GPU1

GPU4 GPU7

GPU5

GPU3 GPU0

GPU1

GPU4 GPU7

GPU5

(c) Blink 6-GPU spanning trees
Figure 4. Broadcast comparison between NCCL and Blink over 6-GPUs in DGX-1P

arise from a number of factors including increased model
sizes and faster computation on newer hardware genera-
tions. Recent work has made the case for large batch sizes
for ResNet (Goyal et al., 2017; Smith et al., 2017), which
indirectly affects communication overhead by reducing the
number of synchronization rounds per-epoch. However,
these techniques lack generality when it comes to DNNs
other than ResNet and there continues to be a debate in
the machine learning community with regard to their effi-
cacy (Masters & Luschi, 2018; LeCun, 2018).

Crucially, we find that even within a single high-
performance server like the DGX-1 (dgx1), communication
overheads are amplified due to one of the main shortcoming
of existing communication libraries like NCCL or Horovod:
their inability to handle topology heterogeneity. These li-
braries typically use a fixed ring-based scheme for doing
data transfers. However, ring-based protocols have struc-
tural limitations: for each ring, every node can only have
one input and one output. This strong restriction makes it
impossible for rings to fit into irregular topologies caused
due to scheduler allocations (Figure 2) and this leads to link
under-utilization as shown in Figures 3 and 4.

Figure 5 shows the communication overhead (best-to-worst-
case range), as a percentage of per-iteration time, for four
popular image classification DNNs within a DGX-1V when
using NCCL1. Given n GPUs there could be many n GPU
configurations. We bin these configurations by topology
uniqueness. For example, a 4 GPU configuration consisting
of GPUs [0, 1, 2, 3] is in the same bin as the [4, 5, 6, 7]
configuration. We pick one representative configuration
from each bin and report the best and worst case overheads
for each of the n GPU configuration. Figure 5 highlights
that the communication overheads can be as high as 50%
for these DNNs on a DGX-1V.

1We use NCCL and NCCL2 interchangeably for v2.4.2

0

10

20

30

40

50

3GPU 4GPU 5GPU 6GPU 7GPU 8GPU

C
om

m
un

ic
at

io
n

P
er

ce
nt

ag
e(

%
)

network
 AlexNet
 ResNet18
 ResNet50
 VGG

DGX1−V100

Figure 5. Min-Max communication overhead (percentage of over-
all runtime) for different DNNs when using NCCL on DGX-1V

By modeling the links between GPUs as a graph, classic
results from Edmonds (Edmonds, 1973) and Lovasz (Lo-
vasz, 1976) show that packing spanning trees leads to the
maximum flow from a chosen root vertex to all the other ver-
tices in a directed graph. Thus, one-to-many protocols like
Broadcast using spanning trees from the root node is a po-
tential option to overcome link under-utilization. In addition
to operations like Broadcast that just forward data, com-
munication libraries also need to implement primitives like
AllReduce which can be modeled as a reduce-and-forward
in one direction (towards the root) followed by a Broadcast
in the other direction. But this introduces two important
questions which we explore next: How close to line rate can
GPUs perform computation on data that is being transferred,
and can GPUs support multiple transfer trees efficiently?

2.2 Micro Benchmarks
We validate the potential of computing inline with com-
munication over spanning trees on modern GPU hardware.
We do this using a series of micro-benchmarks mimicking
transfer patterns when using spanning trees. First we test
how deep spanning trees perform as number of the GPUs
increases (depth tests). Next we test how well multiple trees
passing through a GPU can transfer data at the same time.

We present our test results from AWS P3.16xlarge EC2 in-
stance, a DGX-1V with 8x NVIDIA V100 GPUs connected

Blink: Fast and Generic Collectives for Distributed ML

GPU1
(d1)

GPU2
(d2)

GPU3
(d3)

GPU4

d1d1 d1 + d2d1 + d2 d1 d2 d3d1 d2 d3

Figure 6. Depth test of Reduce+forward, over a chain of GPUs.

0
5
10
15
20
25

3 4 5 6 7 8

T
hr

ou
gh

pu
t (

G
B

/s)

Number of GPUs

10MB 100MB 1000MB

Figure 7. Throughput for Reduce+forward over a chain of GPUs.

over an NVLink topology shown in Figure 1. We also ran
the same group of experiments on a DGX-1P machine. For
the sake of brevity, we do not include those results here.

Depth Test. The first topology class we consider is a depth
test where we vary depth of trees that are used. To do this
we consider a simple chain topology (Figure 6).

Given a chain topology, we consider a reduce+forward traf-
fic pattern. Results from other traffic patterns (data forward
and Reduce-Broadcast) are included in Appendix A.1. For
Reduce+forward (Figure 6), each GPU has its own data.
When a GPU receives data from its predecessor, it invokes a
reduction function (denoted as +©) on the received data with
its own data, passing the result to its successor.

We test these operations over different number of GPUs
(3-8GPU) and vary data sizes from 10MB to 1000MB
(Figure 7). As we increase the chain length, throughput
decreases to around 19 GB/s from around 21 GB/s for
1000MB. We also see that throughput drops as the dataset
size becomes smaller; it is hard to saturate fast links with
small data sizes and the constant overheads in invoking
CUDA operations are significant at smaller data sizes.

Multi-transfer Test. Next we consider the effect of having
multiple transfers simultaneously take place in a given topol-
ogy. These tests are important to ascertain if we can have
multiple data transfers happen in parallel. To do this we con-
sider two topologies: a multi-input, multi-output (MIMO) as
shown in Figure 8(a) and a multi-chain aggregation (MCA)
shown in Figure 8(b).

In the MIMO topology, two nodes on the left concurrently
send data to the center node. The center node aggregates its
local data (d3, d3’) with received data blocks (d1, d2) re-
spectively, and then forwards the aggregated result (d1 +©d3,
d2 +©d3’) to two different destinations. We test performance
with multiple dataset sizes as shown in Figure 8(c). We find
that for datasets larger than 10MB, we can achieve around
18GB/s throughput, which is around 15% lower than maxi-
mum throughput on NVLink Gen2.

In the MCA topology (Figure 8(b)), we consider a center
node that merges two reduce+forward chains. Figure 8(c)
shows that MCA has roughly the same throughput as MIMO

and achieves around 18 GB/s for data larger than 10 MB.

Summary. From the micro-benchmark results, we see mod-
ern GPUs with NVLink interconnects provide good support
for deep and broad trees while forwarding data. We also
see that GPUs can perform reductions while forwarding
data and also support multiple transfers at the same time.
While these scenarios do show some drop in performance
compared to pairwise NVLink transfers, this drop is only
minor, and the resultant throughput is much higher than that
achievable when using PCIe. Overall, these results make it
promising to explore the use of spanning trees to implement
collective communication protocols.

2.3 Blink Approach
We next outline our approach to building high performance
collective communication primitives in Blink and present
an end-to-end workflow as shown in Figure 9.

Our main approach in Blink is to dynamically generate the
appropriate collective communication primitives to make
it best utilize a given topology. We achieve high utiliza-
tion by packing spanning trees and use algorithms that can
maximize the transfer rate achieved while minimizing the
number of trees used. Finally, we implement many-to-many
algorithms like AllReduce by performing many-to-one and
one-to-many operations on each direction of bi-directional
links. The workflow of using Blink consists of:

• At runtime, once a deep learning job has been sched-
uled and assigned a set of GPUs, Blink is able to
probe the topology of the machine and infer the inter-
connect topology across only the GPUs allocated.

• Once we have the topology, we model collective com-
munication operations as flows on a directed graph and
compute the maximum fractional packing of spanning
trees. We denote this step as TreeGen and this step
outputs a set of spanning trees and weights correspond-
ing to how much data should be sent over them.

• Next, CodeGen parses the spanning trees and gener-
ates CUDA code. The code generated matches the API
offered by NCCL and is packaged into a shared library
libblink.so.

• Finally we set the LD PRELOAD flag to dynamically
load the Blink implementations when the main pro-
gram in invoked. This ensures that existing programs
can be run without any modification.

3 DESIGN
In this section we outline the design of Blink and describe
our techniques for creating protocols that address the dual
challenges of high link utilization and heterogeneous topolo-
gies. We first study one-to-many protocols like Broadcast
or Gather and describe our approach to packing spanning
trees and the approximation framework we use to efficiently

Blink: Fast and Generic Collectives for Distributed ML

GPU1
(d1)

GPU3
(d3,
d3')

GPU4

d1d1

GPU2
(d2)

d2d2

d1 d3d1 d3

GPU5

d2 d3'd2 d3'

(a) Multi-Input, Multi-Output
(MIMO)

GPU2
(d2)

GPU5

d1 d2d1 d2

d1 d2
d3 d4
d1 d2
d3 d4

GPU4
(d4)

d3 d4d3 d4

d1d1
GPU1
(d1)

GPU1
(d1)

d1
GPU1
(d1)

GPU3
(d3)

GPU3
(d3)

d3d3

(b) Multi-Chain Aggregation
(MCA)

0

5

10

15

20

10MB 100MB 1000MB

T
hr

ou
hg

pu
t (

G
B

/s)

Data Size

MIMO MCA

(c) MIMO, MCA Throughput

Figure 8. MIMO, MCA topology and test throughput.

TopologyTopologyTopology
Discovery

Filter & TreeGen

Scheduler

Assigned
GPUs

Assigned
GPUs

CodeGen
TreesTrees libBlink.so

Main
Program

libNCCL.so

Figure 9. Blink toolchain workflow

generate spanning trees. Finally we discuss how our tech-
niques can be extended to handle all-to-all protocols like
AllReduce.
3.1 Packing Spanning Trees
We first consider the problem of broadcasting data from one
root GPU to all the other GPUs in the system. The topology
we infer from the allocated resources can be modeled as a
directed graph where every GPU is a vertex V and every
link (NVLink or PCIe) is marked as a directed edgeE. Each
directed edge also has a bandwidth proportional capacity.

Given the above model, the optimal rate possible for Broad-
cast is the maximum weight of flows that originate from a
given root vertex r and reach all the other vertices in the
graph. This problem is well studied in graph theory (Ed-
monds, 1973) and prior work has shown that the optimal
rate can be achieved by finding the maximal packing of a
number of directed spanning trees or arborescences in the
graph (Lovasz, 1976). Each arborescence Ti originates at
the root vertex and follows directed links to span every other
vertex. Thus the problem of finding the optimal schedule
for Broadcast can be solved by finding the set of maximum
weight arborescences that satisfy the capacity constraints.

max
∑
i

wi (1)

such that ∀e ∈ E,
∑
i

κi ∗ wi < ce (2)

where κi =

{
1, if e ∈ Ti
0, otherwise

(3)

More formally, our problem statement is given a graph G
with vertices V , edges E and root vertex r and spanning
trees T1, T2, T3...Ti we wish to find the weights wi such
that the sum of weights trees passing through any edge does

not exceed the capacity of the particular edge.

While the above formulation can be viewed as an optimiza-
tion problem, the number of arborescences in a graph can
be exponentially large (O(nn−2) for a complete graph) and
hence is not a practical model to use. A number of more
efficient exact algorithms (Gabow & Manu, 1998) have
been proposed for this problem but their running time is
still O(n3mlog(n2/m)) for a graph with n vertices and m
edges. In this paper we instead use a recently proposed
approximate packing scheme and then discuss how we min-
imize the number of trees used to achieve the optimal rate.
3.2 Approximate Packing
The multiplicative weight update (MWU) is an algorith-
mic technique that is used in a number of domains rang-
ing from optimization to game theory. Our specific use of
MWU here follows a recently proposed algorithm to achieve
near-linear time approximation for fractional packing prob-
lems (Chekuri & Quanrud, 2017). For the case of packing
spanning trees, this approach finds a (1− ε)-approximation
in O(m lnm/ε2), where m is the number of edges.

The MWU procedure for finding the optimal set of packing
spanning trees proceeds in the following fashion: We ini-
tialize every edge with a capacity and a weight that marks
how much of the capacity has been used. Given this, we run
an iterative method where at each iteration we find the min-
imum weight spanning tree given the current assignment.
We then increment the weight on this chosen tree by an ε fac-
tor and update weights on the graph correspondingly. The
algorithm provably converges after O(lnm/ε2) iterations
and on convergence we get a set of directed spanning trees
T1...Ti and corresponding weights wi for each of them. The
total rate for Broadcast will be the sum of weights Σiwi.

While the MWU procedure has very low execution time and
achieves the optimal rate, there is no bound on the number of

Blink: Fast and Generic Collectives for Distributed ML

spanning trees returned. For example we find that with the
DGX-1V topology of 8 GPUS, MWU procedure returns 181
spanning trees while the minimum number of trees that can
be used to achieve the same optimal rate is 6. The weights
on the trees generated by MWU vary from 0.002 to 0.899.
Having a larger number of trees will mean that the amount
of data transmitted per tree will be much smaller leading
to lower throughput (Section 2.2) and higher overhead in
scheduling transfers in the generated code (Section 4).
3.2.1 Minimizing Number of Trees
We design an integer-linear program based solution to mini-
mize the number of spanning trees that are used. From the
above described MWU procedure we get the optimal rate b∗

and a set of candidate spanning trees T1, ...Tk. To minimize
the number of spanning trees, we formulate an integer linear
program (ILP) similar to the one presented before but with
each weight is restricted to be 0 or 1. This problem can be
expressed as

max

k∑
i=1

wi (4)

such that ∀e ∈ E,
∑
i

κi ∗ wi < ce (5)

∀wi ∈ {0, 1} (6)

where κi =

{
1, if e ∈ Ti
0, otherwise

(7)

k here is controlled by the number of trees returned by the
MWU procedure and thus is much smaller than the overall
number of spanning trees present in the graph. Solving this
ILP will yield ĉ, the maximum rate that is feasible by only
using integer capacities for each tree. However ĉ might
be much lower than c∗ and we thus iteratively relax the
constraints (i.e. allowing wi to take fractional values) until
ĉ is within a configured threshold (e.g., 5%) of c∗.

Using this procedure reduces the number of trees from 181
to 6 for the 8-GPU case in DGX-1V topology with each tree
having a rate of 1.0. In terms of data size, this improves
the amount of data transferred through a single tree leading
to better link utilization. For a 1000MB transfer, each tree
will now transfer 166MB while without the ILP the transfer
sizes vary from 0.33MB to 148MB.
3.3 Handling many-to-many operations
The above discussion focused on one-to-many operations
like broadcast and gather where packing directed spanning
trees yields the optimal rate. To handle many-to-many op-
erations we exploit the fact that all the links found in these
machines are bi-directional in nature and hence we can
create an undirected graph to run a many-to-one primitive
using one direction of links and correspondingly run a one-
to-many primitive in the other direction. For example, to

do an all-reduce operation on the directed graph, we first
run a reduce operation to a chosen root vertex using the
undirected graph and then do a broadcast operation from
the root vertex using the same tree but with links going in
the reverse direction.

This strategy of using two undirected trees also matches
the lower bound of number of messages required for AllRe-
duce operations. As shown in prior work (Patarasuk &
Yuan, 2009), the minimum number of messages that need
to be sent by a process for AllReduce, is 2× dN−1

N e. The
spanning tree over N vertices contains N − 1 edges and
accounting for trees in both directions (one for Reduce and
one for Broadcast) we similarly have 2× (N − 1) messages.
Assuming a continuous forwarding model (similar to our
benchmarks in Section 2.2), messages sent by all N pro-
cesses simultaneously and we can thus achieve a similar
bound of 2× dN−1

N e messages per process.
3.4 DGX-2 and Multi-server settings
We next extend our design to switch-based settings like
DGX-2 and multi-machine training. The DGX-2 consists
of 16 V100 GPUs connected over NVSwitch; each GPU is
connected to the switch over 6x NVLinks (150GBps bidi-
rectional throughput). On the DGX-2, NCCL constructs
binary trees for small dataset sizes (< 16KB) and rings for
larger datasets. In contrast, on the DGX-2, Blink’s gener-
ated spanning trees for AllReduce (Reduce-Broadcast) are
deceptively simple: with m GPUs, each GPU acts as a root
for 1/m of the data chunks and each root is directly con-
nected to (m− 1) leaf nodes, resulting in m one-hop trees.
Blink’s one-hop trees have a significant latency and through-
put advantage over NCCL’s double-binary trees for smaller
dataset sizes; we show this quantitatively in Section 5.2.

When the GPUs of a training task span multiple servers,
connected over a switch or a hierarchy of switches, Blink
uses a three phase protocol (example of two 4-GPU ma-
chines in Appendix A.2). The first phase consists of a per-
server reduction over local spanning trees – the root of each
tree within each server aggregates data from its children
as before. The second, new, phase consists of cross-server
Reduce-Broadcast (similar to within the DGX-2) – across
n servers, there are n one-hop cross-server trees, with each
server-local root connected to (n−1) roots on other servers.
The third phase consists of each server-local root Broadcast-
ing the result of the second phase to all nodes in their server.
We evaluate our multi-server protocol in Section 5.3.

4 IMPLEMENTATION
In this section, we first discuss our code generation imple-
mentation and discuss how choosing the appropriate chunk
size is important to achieve good performance.
4.1 CodeGen Implementation
For ease of illustration, we discuss two types of collective
communications: Broadcast and AllReduce. We note that

Blink: Fast and Generic Collectives for Distributed ML

GPU1 -> GPU2 GPU2 -> GPU3 GPU3 -> GPU4

Time

w/o
chunking

w/
chunking

Figure 10. Data chunking to reduce multi-hop latency.

0
2
4
6
8

10

1 2 3 4 5C
hu

nk
 si

ze

(M
B)

iteration number

Chunk size

0
20
40
60
80
100

1 2 3 4 5Th
ro

ug
hp

ut

(G
B/

s)

iteration number

Throughput

Figure 11. Automatic chunk size selection with MIAD (multiple-
increase, additive-decrease.)

these are the most frequently used primitives by deep learn-
ing workloads and other collective primitives follow similar
patterns. For example, Gather is the inverse of Broadcast,
and AllGather is AllReduce without using a reduction func-
tion.

Broadcast: We first parse the spanning trees generated by
the procedure described in Section 3, with each spanning
tree having a different weight associated with it. Once we
receive the input buffer to be Broadcast from the root node,
we split the buffer among all the spanning trees based on
their weights.To perform data transfer on a link in the tree,
we issue a cudaMemCpy command from the source to the
destination GPU. To reduce latency, instead of transmitting
all the data assigned to this tree at once, we further divide
data in each tree into multiple small chunks. Once a chunk
has been transferred, we issue a CUDA event to notify the
destination. To enable parallel transfers across trees, we use
CUDA streams and by using a stream per link, per tree we
can achieve high utilization.

AllReduce: As described in Section 3.3, we execute AllRe-
duce by leveraging bi-directional links. We perform reduc-
tions in one direction to a root node. Once the root node
computes the final reduce result, it is Broadcast in the re-
verse direction. We implement all the reduction functions
supported by NCCL (e.g. min, max, etc.) as CUDA kernels.
4.2 CodeGen Optimizations
We next discuss two issues we faced during Blink imple-
mentation that stem from limitations of existing hardware.
4.2.1 Automatic chunk size selection
Within each CUDA stream, a chunk is our atomic unit for
data copy / synchronization between sender and receiver.
For spanning trees, chunk size is an important factor in de-
termining overall latency, because each node cannot start
forwarding until it receives a complete chunk from its pre-

GPU1
(d1, d2)

GPU2 GPU3 GPU4
d1d1 d1d1 d1d1

GPU1
(d1, d2)

GPU4

GPU2 GPU3

d2d2

d2d2 d2d2
Tree 2Tree 2

Tree 1Tree 1

Stream reuse Stream reuse

Figure 12. Stream reuse for fair sharing of links.

1

2

3

4

5

6

AllReduceP100 AllReduceV100 BroadcastP100 BroadcastV100

S
pe

ed
up

Figure 13. Theoretical speedups from packing spanning trees com-
pared rings on P100 and V100. Boxplot shows a distribution for
possible configurations and whiskers show 5th and 95th percentile.

decessor. Figure 10 shows a simple example in a four GPU
scenario. Splitting data into two chunks reduces transfer
time by a third when compared to a setting with no chunk-
ing. Our goal is to parallelize (pipeline) data transfers while
minimizing multi-hop latency. Thus intuitively, making the
chunk size small should improve performance and link uti-
lization. However for each chunk we need to issue at least
three CUDA commands for copying/synchronization and
having a large number of small chunks leads to increased
overhead in scheduling these commands.

Thus we use an adaptive scheme to automatically select
the chunk size. As machine learning models are typically
run for a large number of iterations, we observe that we
can use the first few iterations to explore how changing the
chunk-size affects overall performance. This is necessary
as in our experience the optimal chunk size varies based on
the data size, number of spanning trees in the topology and
maximum depth of each tree.

Our algorithm follows a multiplicative increase, additive de-
crease (MIAD) scheme across iterations. We initialize the
chunk size with a small value and increase the chunk size by
a multiplicative factor as long as the measured throughput
is increasing. If the throughput decreases we additively de-
crease the chunk size until we reach a steady state. Figure 11
shows an example execution of our chunk size selection al-
gorithm when running Broadcast over 4 GPUs. Here, we
start with a chunk size of 1MB and multiplicatively increase
it by 2× on every iteration. We find that after four iterations
the throughput stabilizes to the optimal value.
4.2.2 Link Sharing
One of the other challenges with using multiple trees on
existing hardware is that the CUDA functions do not provide
any direct control on how links are shared. For example
if say there are two trees with weight 0.5 that are passing
through the same link, then a fair sharing scheme would

Blink: Fast and Generic Collectives for Distributed ML

0
20
40
60
80

100
120
140

5,6
,7

4,5
,7

3,6
,7

3,5
,7

1,5
,6
4,5

,6,
7
3,5

,6,
7
3,4

,6,
7
3,4

,5,
7
2,3

,6,
7
2,3

,5,
7
2,3

,5,
6
1,5

,6,
7
1,4

,5,
7
1,4

,5,
6
1,3

,5,
7
1,3

,5,
6
1,3

,4,
5
1,2

,5,
6

3,4
,5,

6,7

2,3
,5,

6,7

2,3
,4,

5,7

1,4
,5,

6,7

1,3
,5,

6,7

1,3
,4,

6,7

1,3
,4,

5,7

1,3
,4,

5,6

1,2
,5,

6,7

1,2
,4,

6,7

1,2
,4,

5,7

1,2
,4,

5,6

1,2
,3,

4,5

0,1
,4,

5,7

2,3
,4,

5,6
,7

1,3
,4,

5,6
,7

1,2
,4,

5,6
,7

1,2
,3,

5,6
,7

1,2
,3,

4,6
,7

1,2
,3,

4,5
,7

1,2
,3,

4,5
,6

0,1
,4,

5,6
,7

0,1
,3,

4,5
,7

0,1
,3,

4,5
,6

1,2
,3,

4,5
,6,

7

0,1
,3,

4,5
,6,

7

0,1
,2,

3,4
,5,

6,7

ge
oM

ean

Th
ro

ug
hp

ut
 (G

B/
s)

Allocated GPU IDs

Blink
NCCL 2

Figure 14. Broadcast throughput comparison between NCCL2 and Blink for all unique topologies on DGX-1V.

0

10

20

30

40

50

60

5,6
,7

3,6
,7

4,5
,6,

7
3,5

,6,
7
2,3

,6,
7
2,3

,5,
7

3,4
,5,

6,7

2,3
,5,

6,7

2,3
,4,

5,7

2,3
,4,

5,6
,7

1,2
,3,

5,6
,7

1,2
,3,

4,6
,7

7G
PU

8G
PU

ge
oM

ean

Th
ro

ug
hp

ut
(G

B/
s)

GPU lD

Blink NCCL 2

Figure 15. Broadcast comparison between NCCL2 and Blink in
all possible topologies on DGX-1P.

transmit one chunk from the first tree followed by one chunk
from second tree. However in our experiments we find that
the CUDA implementation does not always result in fair
sharing and that chunks from one of the trees could be
arbitrarily delayed. This introduces gaps in the forwarding
pipeline and harms the effective throughput achieved.

Since ordering guarantees are only provided by CUDA
streams, we address this problem by reusing CUDA streams
when the same link is used in multiple trees at roughly the
same position. For example, as shown in Figure 12, we
have two spanning trees both starting from GPU1, which
contain two data pieces (d1 for tree1, d2 for tree2). Once
we have created streams for first tree, we compare pairwise
link positions between the two trees. Note that link GPU1
<–>GPU2 (first hop from the source) is in the same posi-
tion on both trees. Thus when creating streams for tree 2,
instead of initializing a new stream, we re-use the stream
from tree 1 and schedule transfers to ensure fair sharing.

5 EVALUATION
In this section, we evaluate Blink’s performance along
three fronts. First, we discuss the benefits of packing trees
and present theoretical comparisons between Blink with
NVIDIA NCCL, the start-of-the-art ring-based collectives
library. Second, we show experimental results highlight-
ing throughput comparison between NCCL and Blink
for Broadcast and AllReduce on three different hardware
settings (DGX-1P, DGX-1V, DGX-2). Third, we provide
end-to-end speed-up results of using Blink with four popu-
lar DNNs on both single DGX-1 and multi-DGX-1 settings.
We also present results from combining transfers over PCIe
and NVLink in Appendix A.3.
5.1 Tree Packing Benefits
We first evaluate the theoretical benefits of packing spanning
trees vs. a ring-based approach used by libraries like NCCL.

We compare the number of rings that are created in a given
topology by NCCL and the total weight of spanning trees
packed by Blink for all possible allocations from 3 GPUs
to 8 GPUs on both the V100 and P100 machine. We translate
this to a Broadcast rate using the lower bounds on messages
required for Broadcast dN−1

N e and AllReduce (2× dN−1
N e).

That is given 4 rings for the 8 GPU case, each ring will
operate at 8

14 of link bandwidth and with 4 such rings our
effective rate is 32

14 . We approximate the bandwidth for PCIe
rings to have half as much bandwidth as NVLink.

Figure 13 shows the distribution of speedups we can achieve
by packing spanning trees. We see in all cases packing
spanning trees should be at least as fast as using rings and
that in some cases (i.e. where rings have to go through
PCIe), we can achieve up to 6x speedup. We note that our
speedups could be higher in practice due to PCIe performing
worse than our model or lower due to chunking overheads.
5.2 Broadcast, AllReduce Micro-benchmarks
We next compare the performance of Blink with state-of-
the-art NCCL2 on the two most frequently used collective
primitives, namely Broadcast and AllReduce. Considering
the topology (Figure 1), and accounting for the different
number of GPUs in use and their positions, we have 46
different topology settings for DGX-1V, and 14 different
topology settings for the DGX-1P machine. For both Broad-
cast and AllReduce (Figure 14, Figure 16), the number list
on x-axis indicates the allocated GPUs in each configura-
tion.

NVLink Broadcast. We provide Broadcast throughput
comparison between NCCL and Blink for all possible
topologies induced by GPU allocations on a DGX-1 (V100)
on AWS (p3.16xlarge). The number of GPUs we use range
from 3 to 8. To fully saturate our interconnects, we test with
a total data size of 500MB (50MB to 1000 MB error-bars).

In Fig. 14, Blink can achieve up to 6× (2x geometric
mean) speed up in performance compared to NCCL. In the
cases where GPUs are not fully connected over NVLink
(e.g. GPU 1,4,5,6, as shown in Figure 1), NCCL cannot
form NVLink-only rings across these GPUs, thus forcing
it to fall back on using PCIe for data transfers. This re-
sults in many NVLink channels going unused, leading to
dramatically lower throughput. NCCL matches Blink
when it can form a fully connected NVLink ring and when
Blink can only create one spanning tree (e.g., when us-

Blink: Fast and Generic Collectives for Distributed ML

0
10
20
30
40
50
60
70

5,6
,7

4,5
,7

3,6
,7

3,5
,7

1,5
,6
4,5

,6,
7
3,5

,6,
7
3,4

,6,
7
3,4

,5,
7
2,3

,6,
7
2,3

,5,
7
2,3

,5,
6
1,5

,6,
7
1,4

,5,
7
1,4

,5,
6
1,3

,5,
7
1,3

,5,
6
1,3

,4,
5
1,2

,5,
6

3,4
,5,

6,7

2,3
,5,

6,7

2,3
,4,

5,7

1,4
,5,

6,7

1,3
,5,

6,7

1,3
,4,

6,7

1,3
,4,

5,7

1,3
,4,

5,6

1,2
,5,

6,7

1,2
,4,

6,7

1,2
,4,

5,7

1,2
,4,

5,6

1,2
,3,

4,5

0,1
,4,

5,7

2,3
,4,

5,6
,7

1,3
,4,

5,6
,7

1,2
,4,

5,6
,7

1,2
,3,

5,6
,7

1,2
,3,

4,6
,7

1,2
,3,

4,5
,7

1,2
,3,

4,5
,6

0,1
,4,

5,6
,7

0,1
,3,

4,5
,7

0,1
,3,

4,5
,6

1,2
,3,

4,5
,6,

7

0,1
,3,

4,5
,6,

7

0,1
,2,

3,4
,5,

6,7

ge
oM

eanTh
ro

ug
hp

ut
(G

B/
s)

Allocated GPU IDs

Blink
NCCL 2

Figure 16. AllReduce throughput comparison between NCCL2 and Blink for all unique topologies on DGX-1V.

0%

20%

40%

60%

3GPU (0,1,2)

3GPU (3,6,7)

4GPU (0,1,2,3)

4GPU(1,4,5,7)

5GPU (1,4,5,6,7)

5GPU(2,3,5,6,7)

6GPU (1,2,4,5,6,7)

6GPU(2,3,4,5,6,7)
7GPU 8GPU

geoMean

R
ed

uc
tio

n
in

ite

ra
tio

n
tim

e

ResNet18
ResNet50
AlexNet
VGG16

0%
20%
40%
60%
80%

100%

3GPU (0,1,2)

3GPU (3,6,7)

4GPU (0,1,2,3)

4GPU(1,4,5,7)

5GPU (1,4,5,6,7)

5GPU(2,3,5,6,7)

6GPU (1,2,4,5,6,7)

6GPU(2,3,4,5,6,7)
7GPU

8GPU
geoMean

R
ed

uc
tio

n
in

co

m
m

. t
im

e

Figure 17. Blink end-to-end training time reduction (ImageNet1K) within a DGX-1V machine.

0.015625
0.0625
0.25
1
4
16
64
256

1K
B
2K
B
4K
B
8K
B
16
KB
32
KB
64
KB
12
8K
B
25
6K
B
51
2K
B
1M
B
2M
B
4M
B
8M
B
16
MB
32
MB
64
MB
12
8M
B

25
6M
B

51
2M
B
1G
B

T
hr

ou
gh

pu
t

(G
B

/s)

Data Size

NCCL Blink

Figure 18. AllReduce (Blink and NCCL2) on a 16-GPU DGX-2.

ing GPU 2,3,6,7, as depicted in Figure 1, NCCL2 can
form one bi-directional ring: GPU2<–>GPU6<–>GPU7<–
>GPU3<–>GPU2). However, even in these cases, Blink
still achieves 3-5 GB/s higher performance due to optimized
chunked transfers.

Given the topology difference of DGX-1P and DGX-1V, we
also show the throughput comparison between NCCL and
Blink on DGX-1P. As shown in Figure 15, we only have
14 unique topology configurations, all of which show similar
throughput gains as DGX-1V. Overall, Blink achieves up
to 3x speed up (1.6x geometric mean) over NCCL.

NVLink AllReduce. Compared to Broadcast throughput
in Figure 14, AllReduce achieves lower performance for
all 46 configurations for both NCCL and Blink (Figure 16).
This is consistent with the micro-benchmark results from
Section 2.2. For example, in the 3 and 4 GPU settings
on the DGX-1 (V100), AllReduce achieves an average 20-
30GB/s less than corresponding Broadcast settings. For the
8 GPU configuration, AllReduce only achieves half of the
corresponding Broadcast throughput for both NCCL and
Blink. For NCCL’s AllReduce, each data chunk needs to go
through the ring twice, once for Reduce then for Broadcast,
which leads to roughly half the performance. Similarly
for Blink, Reduction takes place in one direction of the
spanning tree, and Broadcast in the other direction.

For AllReduce, Blink outperforms NCCL with up to 8×
(2× geometric mean) speed up in throughput. Similar to
Broadcast, Blink has higher throughput gains in the cases
where NCCL cannot form NVLink rings over the allocated
GPUs or has to drop some links due to the constraint of form-
ing rings. Results from DGX-1P also closely match these

0

500

1000

Re
sN
et1
8

Re
sN
et5
0

Al
ex
Ne
t

VG
G1
6

Im
ag
e/
Se
c NCCL

Blink

(a) Using 2 DGX-1Vs

0
10
20
30
40

40Gbps 100Gbps 400Gbps

Th
ro

ug
hp

ut
(G

B/
s)

Cross-machine bandwidth

NCCL
Blink

(b) AllReduce Projections
Figure 19. Multi-DGX-1 DNN training with Blink.

findings and we omit them here due to space constraints.

DGX-2 AllReduce. We next compare Blink to NCCL when
using 16 GPUs on a DGX-2 machine. As described in
Section 3.4, with single-hop trees on the DGX-2, Blink is
especially effective for smaller data sizes offering lower
latency and higher throughput, compared to NCCL’s double-
binary trees and rings. Blink can get up to 3.32× lower
latency (Appendix A.4, Figure 27) and up to 3.5× better
AllReduce throughput (Figure 18) than the latest NCCL
release (v2.4).
5.3 End-to-end Training
We incorporate Blink with PyTorch (Paszke et al., 2017),
and evaluate the end-to-end performance gains for train-
ing. We use four popular CNNs: AlexNet, ResNet18,
ResNet50 and VGG16 and train these models on ImageNet-
1K (ILSVRC12) dataset (Russakovsky et al., 2015). For
all models, we use the same per-GPU mini-batch size and
hyper-parameters used in the original papers.

Single server training. We evaluate these models by train-
ing them over 3 to 8 GPUs on the DGX-1 (V100). For
a fixed number of GPUs, we pick multiple configurations
where appropriate, but to save space, we limit ourselves only
to a subset of the unique configurations from before. Specif-
ically, from Figure 16, for configurations with n GPUs, if
we have more than one configuration, we pick ones where
the speed-up of Blink over NCCL is unique.

As shown in Figure 17, switching collective communication
backend from NCCL2 to Blink, can reduce up to 40%
time spent in end-to-end DNN training iterations (6.3%
geometric mean) , and achieve up to 87% communication
time reduction (31% in geometric mean).

Blink: Fast and Generic Collectives for Distributed ML

Multi-server training. Blink’s multi-server AllReduce
consists of a per-server reduction over spanning trees (t1),
cross-server Broadcast and Reduce (t2), followed by a
Broadcast within each server as before (t3). We consider
scenarios where the GPU allocation is fragmented across
machines, prevalent in multi-tenant clusters as shown in
Figure 2. For example we consider a 8GPU job spread
across two DGX-1V servers with 3 and 5 GPUs allocated
respectively. Figure 19(a) shows that Blink outperforms
Horovod with NCCL/MPI by up to 11%. Blink’s reduc-
tion in improvement over NCCL, compared to the gains
in single-server training, stem from commodity cloud in-
terconnects. In commodity networks, inter-server AllRe-
duce throughput (40Gbps) is much lower than intra-server
throughput (40GBps). Thus while Blink can reduce t1
and t3, there isn’t much that can be done for t2.

To understand how faster interconnects will change per-
formance, we present results from a simulation varying
the cross-machine bandwidth (Figure 19(b)). We compare
AllReduce throughput for 100MB of data and see that as
cross-machine bandwidth increases (Thomas et al., 2018;
Verizon-400Gbps), Blink’s design will lead to more pro-
nounced end-to-end benefits. NCCL is bound by intra-server
PCIe throughput where as Blink can keep up with inter-
server throughput until the intra-DGX-1V NVLinks become
a bottleneck (for the 3-5 GPU case this is ∼300Gbps).

6 RELATED WORK
Work on collectives fall in one of two buckets (below):

Topology-fixed Schemes. Basic collective operations (e.g.
Broadcast, AllReduce) are fully supported in the MPI (Mes-
sage Passing Interface) standard (Blaise Barney, 2018). Ear-
lier work has mainly focused on designing optimal col-
lectives over regular, well-defined network structures like
hypercube (Scott, 1991; Bhuyan & Agrawal, 1984), full
mesh (Barnett et al., 1993), etc. Recent work has looked
at more general networks, with optimizations for scenar-
ios when number of communication nodes are not power
of two (Thakur et al., 2005), and for auto-tuning of buffer
size and algorithm selection for a specific system architec-
ture (Vadhiyar et al., 2000).

Under specific network settings, there are many algorithms
that achieve better performance than MPI. For example,
the latency-optimal all-reduce solution, ”butterfly algo-
rithm” (Rabenseifner, 2004; van de Geijn, 1994; Zhao &
Canny, 2013), divides all-reduce into two steps: first is a
recursive reduce-scatter and then followed by a recursive
all-gather. But, the communication pattern of butterfly al-
gorithms often cause network contention, which makes it
less practical. Within a tree or ring topology, ring-based
collectives were shown to be bandwidth optimal in homoge-
neous network settings (Faraj et al., 2008; Patarasuk & Yuan,
2009). Several companies have developed their own imple-

mentations of this algorithm, such as Horovod (Sergeev &
Balso, 2018) from Uber, Baidu Ring All-Reduce (Ng, 2017),
NVIDIA NCCL (Jeaugey, 2017), Facebook’s Gloo (Noord-
huis, 2017), IBM Power AI DDL (Hunter, 2017). However,
they all operate under the assumption of a fixed topology,
which is not a good fit for cloud computing where topology
may change dynamically. Blink is designed to handle
irregular topologies and yield optimal solutions.

Topology-aware Protocols. Techniques that exploit hier-
archy in wide area networks for collective communication
center around the idea of minimizing data transfer over
slow (wide-area) links (Karonis et al., 2000; Kielmann
et al., 1999). The same idea has been extended to cloud
environments where node locality is determined by pair-
wise network bandwidth measurements (Gong et al., 2015).
Smelt adopts similar idea in NUMA multi-core environ-
ment (Kaestle et al., 2016). Blueconnect decouples AllRe-
duce into ReduceScatter and AllGather, pipelining these
two sub-operations (Cho et al., 2019). However it only
works on symmetric topologies, making it less flexible than
Blink spanning trees. Blink is general and is optimized
for multi-GPU collective communication, over symmetric
or asymmetric topologies, and can combine heterogeneous
links (such as PCIe and NVLink) for data transfer.

7 CONCLUSION
Blink is a fast and generic collective communication li-
brary to accelerate distributed machine learning. To handle
topology heterogeneity prevalent in modern GPU hardware,
Blink dynamically packs spanning trees to maximize link
utilization. Compared with state-of-the-art, ring-based col-
lective communication protocols like NCCL2, Blink can
achieve up to 8× faster model synchronization and reduce
end-to-end DNN model training time by up to 40%.

ACKNOWLEDGEMENTS
Guanhua Wang and Ion Stoica are supported by a NSF
CISE Expeditions Award CCF-1730628, and their research
was also supported by gifts from Alibaba, Amazon Web
Services, Ant Financial, CapitalOne, Ericsson, Facebook,
Futurewei, Google, Intel, Microsoft, Nvidia, Scotiabank,
Splunk, and VMware. Shivaram Venkataraman is also sup-
ported by a Facebook faculty research award and support
for this research was also provided by the Office of the
Vice Chancellor for Research and Graduate Education at the
University of Wisconsin, Madison with funding from the
Wisconsin Alumni Research Foundation.

Additionally, we thank the MSR Lab LT, especially Ricardo
Bianchini and Donald Kossmann, for their enthusiastic and
unwavering support of Project Fiddle, and for their generous
support in procuring the many resources required to develop
and evaluate Blink. We also thank the MSR GCR staff,
especially Jim Jernigan and Steven Dahl, for supporting our
DGX-1, DGX-2 needs.

Blink: Fast and Generic Collectives for Distributed ML

REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur,
M., Levenberg, J., Monga, R., Moore, S., Murray, D. G.,
Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke,
M., Yu, Y., and Zheng, X. Tensorflow: A system for
large-scale machine learning. In USENIX OSDI, 2016.

Barnett, M., Littlefield, R., Payne, D., and van de Geijn, R.
Global combine on mesh architectures with wormhole
routing. In Proceedings of the 7th International Parallel
Processing Symposium, 1993.

Bhuyan, L. N. and Agrawal, D. P. Generalized hypercube
and hyperbus structures for a computer network. IEEE
Transactions on Computers, 1984.

Blaise Barney. Message Passing Interface. https://
computing.llnl.gov/tutorials/mpi/, 2018.

Chekuri, C. and Quanrud, K. Near-linear time approx-
imation schemes for some implicit fractional packing
problems. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 801–
820. SIAM, 2017.

Cho, M., Finkler, U., Kung, D., and Hunter, H. Blueconnect:
Decomposing all-reduce for deep learning on heteroge-
neous network hierarchy. In sysML, 2019.

dgx1. NVIDIA DGX-1. https://www.nvidia.com/
en-us/data-center/dgx-1/, 2017.

dgx2. NVIDIA DGX-2. https://www.nvidia.com/
en-us/data-center/dgx-2/, 2018.

Edmonds, J. Edge-disjoint branchings. Combinatorial
algorithms, 1973.

Faraj, A., Patarasuk, P., and Yuan, X. Bandwidth efficient
all-to-all broadcast on switched clusters. International
Journal of Parallel Programming, 2008.

Gabow, H. N. and Manu, K. Packing algorithms for ar-
borescences (and spanning trees) in capacitated graphs.
Mathematical Programming, 82(1-2):83–109, 1998.

Gong, Y., He, B., and Zhong, J. Network performance
aware mpi collective communication operations in the
cloud. IEEE Transactions on Parallel and Distributed
Systems (TPDS), 2015.

Goyal, P., Dollar, P., Girshick, R., Noordhuis, P.,
Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., and He,
K. Accurate, Large Minibatch SGD: Training ImageNet
in 1 Hour. arXiv preprint arXiv:1706.02677, 2017.

Hunter, H. IBM Research achieves record deep learn-
ing performance with new software technology.
https://www.ibm.com/blogs/research/
2017/08/distributed-deep-learning/,
2017.

InfiniBand. Introduction to InfiniBand. https:
//www.mellanox.com/pdf/whitepapers/
IB_Intro_WP_190.pdf, 2007.

Jeaugey, S. Optimized inter-GPU collective operations with
NCCL 2. https://developer.nvidia.com/
nccl, 2017.

Jeon, M., Venkataraman, S., Phanishayee, A., Qian, J., Xiao,
W., and Yang, F. Multi-tenant GPU Clusters for Deep
Learning Workloads: Analysis and Implications. Mi-
crosoft Research Technical Report (MSR-TR-2018-13),
2018.

Kaestle, S., Achermann, R., Haecki, R., Hoffmann, M.,
Ramos, S., and Roscoe, T. Machine-aware atomic broad-
cast trees for multicoress. In USENIX OSDI, 2016.

Karonis, N., de Supinski, B., Foster, I., Gropp, W., Lusk,
E., and Bresnahan, J. Exploiting hierarchy in parallel
computer networks to optimize collective operation per-
formance. In Proceedings of the Fourteenth International
Parallel and Distributed Processing Symposium, IEEE
IPDPS’00, 2000.

Kielmann, T., Hofman, R. F. H., Bal, H. E., Plaat, A., and
Bhoedjang, R. A. F. MagPIe: MPI’s collective commu-
nication operations for clustered wide area systems. In
ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, ACM PPoPP’99, 1999.

LeCun, Y. Training with large minibatches is bad for
your health. https://twitter.com/ylecun/
status/989610208497360896?lang=en, 2018.

Lovasz, L. On two minimax theorems in graph. Journal of
Combinatorial Theory, Series B, 21(2):96–103, 1976.

Masters, D. and Luschi, C. Revisiting small batch training
for deep neural networks. CoRR, abs/1804.07612, 2018.
URL http://arxiv.org/abs/1804.07612.

Narayanan, D., Harlap, A., Phanishayee, A., Seshadri, V.,
Devanur, N., Granger, G., Gibbons, P., and Zaharia, M.
Pipedream: Generalized pipeline parallelism for dnn
training. In ACM Symposium on Operating Systems Prin-
ciples (SOSP 2019), October 2019.

NCCL 2.4. Massively Scale Your Deep Learning Training
with NCCL 2.4 . https://bit.ly/2lFwFQ4, 2019.

https://computing.llnl.gov/tutorials/mpi/
https://computing.llnl.gov/tutorials/mpi/
https://www.nvidia.com/en-us/data-center/dgx-1/
https://www.nvidia.com/en-us/data-center/dgx-1/
https://www.nvidia.com/en-us/data-center/dgx-2/
https://www.nvidia.com/en-us/data-center/dgx-2/
https://www.ibm.com/blogs/research/2017/08/distributed-deep-learning/
https://www.ibm.com/blogs/research/2017/08/distributed-deep-learning/
https://www.mellanox.com/pdf/whitepapers/IB_Intro_WP_190.pdf
https://www.mellanox.com/pdf/whitepapers/IB_Intro_WP_190.pdf
https://www.mellanox.com/pdf/whitepapers/IB_Intro_WP_190.pdf
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://twitter.com/ylecun/status/989610208497360896?lang=en
https://twitter.com/ylecun/status/989610208497360896?lang=en
http://arxiv.org/abs/1804.07612
https://bit.ly/2lFwFQ4

Blink: Fast and Generic Collectives for Distributed ML

Ng, A. Bringing HPC Techniques to Deep
Learning. http://research.baidu.com/
bringing-hpc-techniques-deep-learning/,
2017.

Noordhuis, P. Accelerating machine learning for
computer vision. https://github.com/
facebookincubator/gloo, 2017.

NVLink. NVIDIA NVLINK. http://www.nvidia.
com/object/nvlink.html, 2017.

NVSwitch. NVIDIA NVSWITCH. http:
//images.nvidia.com/content/pdf/
nvswitch-technical-overview.pdf, 2018.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in PyTorch. In Proceedings
of the 31st Conference on Neural Information Processing
Systems, NIPS’17, 2017.

Patarasuk, P. and Yuan, X. Bandwidth optimal all-reduce
algorithms for clusters of workstations. J. Parallel Distrib.
Comput., pp. 117–124, 2009.

PCI Express. PCI Express: An Overview of the PCI Express
Standard. http://www.ni.com/white-paper/
3767/en/, 2014.

Rabenseifner, R. Optimization of collective reduction op-
erations. In International Conference on Computational
Science, 2004.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., Berg, A. C., and Fei-Fei, L. Imagenet large scale
visual recognition challenge. International Journal of
Computer Vision, 2015.

Scott, D. Efficient all-to-all communication patterns in
hypercube and mesh topologies. In Proceedings of the
6th Distributed Memory Computing Conference, 1991.

Sergeev, A. and Balso, M. D. Horovod: fast and easy
distributed deep learning in TensorFlow. arXiv preprint
arXiv:1802.05799, 2018.

Smith, S. L., Kindermans, P., and Le, Q. V. Don’t de-
cay the learning rate, increase the batch size. CoRR,
abs/1711.00489, 2017. URL http://arxiv.org/
abs/1711.00489.

Thakur, R., Rabenseifner, R., and Gropp, W. Optimization
of collective communication operations in mpich. Int. J.
High Perform. Comput. Appl., 2005.

Thomas, S., Voelker, G. M., and Porter, G. Cachecloud:
Towards speed-of-light datacenter communication. In
USENIX hotcloud 2018, 2018.

Vadhiyar, S. S., Fagg, G. E., and Dongarra, J. Automatically
tuned collective communications. In Proceedings of the
2000 ACM/IEEE Conference on Supercomputing, SC ’00,
2000.

van de Geijn, R. On global combine operations. In Journal
of Parallel and Distributed Computing, 1994.

Verizon-400Gbps. Verizon marks milestone with successful
400G technology trial. https://bit.ly/2lKgAs7,
2018.

Xiao, W., Bhardwaj, R., Ramjee, R., Sivathanu, M., Kwatra,
N., Han, Z., Patel, P., Peng, X., Zhao, H., Zhang, Q.,
Yang, F., and Zhou, L. Gandiva: Introspective cluster
scheduling for deep learning. In 13th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 18), pp. 595–610, Carlsbad, CA, 2018. USENIX
Association.

Zhang, H., Zheng, Z., Xu, S., Dai, W., Ho, Q., Liang, X., Hu,
Z., Wei, J., Xie, P., and Xing, E. P. Poseidon: An efficient
communication architecture for distributed deep learning
on GPU clusters. In 2017 USENIX Annual Technical
Conference (USENIX ATC 17), pp. 181–193, Santa Clara,
CA, 2017. USENIX Association. ISBN 978-1-931971-
38-6.

Zhao, H. and Canny, J. Butterfly mixing: Accelerating
incremental-update algorithms on clusters. In Proceed-
ings of the 2013 SIAM International Conference on Data
Mining, 2013.

http://research.baidu.com/bringing-hpc-techniques-deep-learning/
http://research.baidu.com/bringing-hpc-techniques-deep-learning/
https://github.com/facebookincubator/gloo
https://github.com/facebookincubator/gloo
http://www.nvidia.com/object/nvlink.html
http://www.nvidia.com/object/nvlink.html
http://images.nvidia.com/content/pdf/nvswitch-technical-overview.pdf
http://images.nvidia.com/content/pdf/nvswitch-technical-overview.pdf
http://images.nvidia.com/content/pdf/nvswitch-technical-overview.pdf
http://www.ni.com/white-paper/3767/en/
http://www.ni.com/white-paper/3767/en/
http://arxiv.org/abs/1711.00489
http://arxiv.org/abs/1711.00489
https://bit.ly/2lKgAs7

Blink: Fast and Generic Collectives for Distributed ML

A APPENDIX

A.1 Micro Benchmarks (DGX-1V)

We continue our discussion of micro benchmarks from Sec-
tion 2.2, highlighting results for forwarding on a chain and
fan in/out tests.

A.1.1 Depth Test

For the forwarding benchmark (Figure 20(a)), GPU1 is
the source node with data named d1, and it passes the
data d1 to GPU2 and then GPU2 forwards it to GPU3 etc.
For “reduce+broadcast” (Figure 20(c)), we perform “re-
duce+forward” in one direction and “forward” in the other
direction, as such a capability can be used for all-to-all
reductions.

A.1.2 Breadth Test

As illustrated in Figure 22(a), in fan-in forward, a center
node (i.e. GPU4) collects data from multiple nodes and then
forwards the collected data to its successor. Instead of just
forwarding data, in the case of fan-in reduce+forward (Fig-
ure 22(b)), the center node computes a reduction function
over the incoming data and its own data, then forwards the
result to it successor. Fan-out forward (Figure 22(c)), is
just the reverse of fan-in forward, in which the center node
receives data from one node (i.e. GPU5), then multicasts
the received data to its successors (i.e. GPU 1,2,3).

We experiment with different data size as we vary the num-
ber of GPUs that serve as fan-in source nodes or fan-out
destination nodes. For DGX-1s, the maximum fan-in and
fan-out degrees are limited to three. For brevity, we omit
the graphs and highlight the key findings. Similar to the
depth tests, with data size >50MB, fan-in and fan-out for-
ward achieves near maximum throughput. Compared with
fan-in forward, the throughput of fan-in reduce+forward de-
creases 1-2 GB/s on average due to the latency of launching
reduction function kernels on the center node (GPU4).

Figure 22 depicts result of breadth tests with different data
size as we vary the number of GPUs that serve as fan-in
source nodes or fan-out destination nodes. We’d like to note
that for the given topology of V100, the maximum fan-in
and fan-out degrees are limited to three. In Figure 22(a),
with data size >50MB, in all three cases, fan-in forward
achieves near maximum throughput. Compared with fan-in
forward, the throughput of fan-in reduce+forward (in Fig-
ure 22(b)) decreases 1-2 GB/s on average due to the latency
of launching reduction function kernels on the center node
(GPU4). We also note that running with 1000MB and a fan-
in of 3 requires allocating memory for each incoming link
and this exceeds the amount of memory available. Finally,
for fan-out forward in Figure 22(c), the throughput is again
close to the peak link bandwidth.

GPU1
(d1)

GPU2 GPU3 GPU4

d1d1 d1d1 d1d1

(a) chain forward

GPU1
(d1)

GPU2
(d2)

GPU3
(d3)

GPU4

d1d1 d1 + d2d1 + d2 d1 d2 d3d1 d2 d3

(b) chain reduce+forward

GPU1
(d1)

GPU2
(d2)

GPU3
(d3)

GPU4
(d4)

d1d1 d1 d2d1 d2 d1 d2 d3d1 d2 d3

d1 d2 d3 d4d1 d2 d3 d4d1 d2 d3 d4d1 d2 d3 d4d1 d2 d3 d4d1 d2 d3 d4

(c) chain reduce-broadcast

Figure 20. Depth test over a chain of GPUs.

 0

 5

 10

 15

 20

 25

3 4 5 6 7 8

B
a

n
d

w
id

th
 G

B
/s

of GPUs

Forward (V100)

1MB
5MB
10MB
50MB
100MB
500MB
1000MB

(a) chain forward throughput

 0

 5

 10

 15

 20

 25

3 4 5 6 7 8

B
a

n
d

w
id

th
 G

B
/s

of GPUs

Reduce+Forward(V100)

1MB
5MB
10MB
50MB
100MB
500MB
1000MB

(b) chain reduce+forward throughput

 0

 5

 10

 15

 20

 25

3 4 5 6 7 8

B
a

n
d

w
id

th
 G

B
/s

of GPUs

Reduce−Bcast (V100)

1MB
5MB
10MB
50MB
100MB
500MB
1000MB

(c) chain reduce-broadcast throughput

Figure 21. Depth test throughput over a chain of GPUs.

A.2 Three-phase AllReduce protocol for
cross-machine settings

As shown in Figure 24, we first partition data based on the
number of spanning trees we have (i.e. 4 in this case). Data
itemXm.g refers to data partitionX on serverm and GPU g.
Each data partition has a distinct server-local root. Figure 24
shows the reduction (function is denoted as +) for partition

Blink: Fast and Generic Collectives for Distributed ML

GPU1
(d1)

GPU2
(d2)

GPU4
(d4)

GPU5

d1d1

d2d2

d1,
d2,
d3,
d4

d1,
d2,
d3,
d4

GPU3
(d3)

d3d3

(a) Fan-in forward

GPU1
(d1)

GPU2
(d2)

GPU4
(d4)

GPU5

d1d1

d2d2
d1 d2
d3 d4
d1 d2
d3 d4

GPU3
(d3)

d3d3

(b) Fan-in reduce+forward

GPU1

GPU2 GPU4
GPU5
(d5)

d5d5

d5d5
d5d5

GPU3

d5d5

(c) Fan-out forward
Figure 22. Breadth test of data forward, reduce+forward in fan-in and fan-out topologies.

 0

 5

 10

 15

 20

 25

1 2 3

B
a
n
d
w

id
th

 G
B

/s

of GPUs

Fan-in Forward (V100)

1MB
5MB
10MB
50MB
100MB
500MB
1000MB

(a) Fan-in forward throughput

 0

 5

 10

 15

 20

 25

1 2 3

B
a
n
d
w

id
th

 G
B

/s

of GPUs

Fan-in Reduce+Forward (V100)

1MB
5MB
10MB
50MB
100MB
500MB
1000MB

(b) Fan-in reduce+forward throughput

 0

 5

 10

 15

 20

 25

1 2 3

B
a
n
d
w

id
th

 G
B

/s

of GPUs

Fan-out Forward (V100)

1MB
5MB
10MB
50MB
100MB
500MB
1000MB

(c) Fan-out forward throughput
Figure 23. Breadth test throughput for Fan-in forward, Fan-in reduce+forward, Fan-out forward.

B which has a root at GPU2. Similar protocol is followed
for other data partitions (e.g. A,C,D).

A.3 Exploiting Link Heterogeneity

For intra-node communication, servers such as the DGX-
1 have both inter-GPU point-to-point (P2P) interconnects
such as NVLink (NVLink) and shared interconnects such
as PCIe (8-12GB/s) (PCI Express). PCIe connects multiple
GPUs to each other within a machine, and to the CPU and
IO deices, through a PCIe switch hierarchy. For inter-node
communication, servers are equipped with multiple Ethernet
or InfiniBand (InfiniBand) ports with a throughput of 3GB/s
and 7GB/s per-port respectively. State-of-the-art collectives,
such as NCCL and Horovod, all use ring-based protocols
which fail to leverage link heterogeneity. The throughput of
a ring is limited by the link with lowest bandwidth and hence
these protocols either restrict themselves to high bandwidth,
homogeneous links, or limit throughput to the link with
lowest bandwidth in the ring. For example, for multi-GPU
communication within a machine, NCCL prioritizes using
only NVLink over PCIe, as PCIe will be the bottleneck if
included in a NVLink ring. Figure 25 shows an example
3 GPU setup for a Broadcast from GPU 0: when fully
connected with NVLink, NCCL builds two rings (0–>1–
>3–>0 & 0–>3–>1–>0) using bi-directional NVLinks,
and ignores PCIe. If we replace GPU3 with GPU4, the lack
of NVLink between GPUs 1 and 4 prevents NCCL from
constructing NVLink-only rings and it has to fall back on
PCIe based communication.

To handle heterogeneous links, Blink simultaneously
transfers data on PCIe and NVLink within a machine and

and balances the amount of data transferred across hybrid
links. We next discuss how we handle hybrid PCIe and
NVLink topologies in the context of our design presented
above. The main challenge in using both PCIe and NVLink
comes from the fact that NVIDIA driver does not directly
allow users to control access to both links and if NVLinks
are detected, the system will automatically enable P2P data
transfer among GPUs using NVLinks. In our experience
we find that using cudaDeviceDisablePeerAccess
disables NVLinks and forces data transfer through PCIe
links. However this still has the limitation that we cannot
construct a unified topology with both sets of links. We
address this problem by constructing two separate sets of
trees, one over PCIe links and another over NVLinks.

One of the challenges with this approach is to balance the
amount of data that is transferred over each link type. Our
approach here is to minimize the maximum time taken by
each of the transfers i.e. minimize max(TPCIe, TNV L).

We denote Dtotal as the total data needs to be transferred,
and DPCIe, DNV L as the data size assigned on either PCIe
or NVLink respectively. Tdpa is the latency for calling
the disable peer access() and we denote BWPCIe

and BWNV L as the bandwidth of PCIe and NVLink trees.
Given this notation and objective, we can see that the opti-

Blink: Fast and Generic Collectives for Distributed ML

Machine 1 Machine 2

A1.1

C1.1
D1.1

GPU1 GPU2

GPU3 GPU4

B1.1

GPU1 GPU2

GPU3 GPU4

GPU1 GPU2

GPU3 GPU4

GPU1 GPU2

GPU3 GPU4

B1.2 = B1.1+B1.2+B1.3+B1.4 B2.2 = B2.1+B2.2+B2.3+B2.4

GPU1 GPU2

GPU3 GPU4

GPU1 GPU2

GPU3 GPU4

B1.2 = B1.2+B2.2 B2.2 = B1.2+B2.2

GPU1 GPU2

GPU3 GPU4

GPU1 GPU2

GPU3 GPU4

Phase 1: local reduce Phase 2: cross-machine reduce-bcast Phase 3: local broadcastData partitions

A1.2

C1.2
D1.2

B1.2

A1.3

C1.3
D1.3

B1.3

A1.4

C1.4
D1.4

B1.4

A2.1

C2.1
D2.1

B2.1

A2.2

C2.2
D2.2

B2.2

A2.3

C2.3
D2.3

B2.3

A2.4

C2.4

B2.4

D2.4
Machine 1 Machine 2 Machine 1 Machine 2 Machine 1 Machine 2

Figure 24. Three-phase AllReduce protocol for cross-machine settings.

GPU1	

NCCL2	 Blink	

	T
hr
ou

gh
pu

t	(
GB

/s
)	

PCIe	

43.6	

48.4	

GPU3	

GPU0	

(a) Fully connected

NCCL2	 Blink	

	T
hr
ou

gh
pu

t	(
GB

/s
)	

NVLink	

4.8	

26.4	
GPU1	

GPU4	

GPU0	

(b) Partially connected

Figure 25. Broadcast throughput, from GPU 0, using both NCCL
and Blink on a DGX-1V.

0

20

40

60

80

100

120

140

3GPU 4GPU 5GPU 6GPU 7GPU 8GPU geoMean

Th
ro

ug
hp

ut
 (G

B/
s) NVLink

PCIe+NVLink

Figure 26. Hybrid and NVLink-only broadcast throughput compar-
ison with varied number of GPUs.

mal data split can be achieved by making TPCIe = TNV L.

Objective TPCIe + Tdpa = TNV L

=⇒ DPCIe =
Dtotal ×BWPCIe

BWPCIe +BWNV L
−

Tdpa ×BWPCIe ×BWNV L

BWPCIe +BWNV L

DNV L =Dtotal −DPCIe

(8)

The optimal data splits are shown in Equation 8. Note that
in Equation 8, Tdpa is empirically measured and may vary
depending on number of GPUs. We measure this during the
initial few calls into our library.

We evaluate hybrid (or combined) data transfers over both
PCIe and NVLink. For brevity, we only show broadcast re-
sults for 3-8 GPUs on the AWS DGX-1V server. Figure 26,
highlights the additional 2-5 GB/s performance gain over
NVLink-only transfers when Blink combines transfers
over both NVLink and PCIe. The time to switch commu-

1
8
64
512
4096
32768

1K
B
2K
B
4K
B
8K
B
16
KB
32
KB
64
KB
12
8K
B
25
6K
B
51
2K
B
1M
B
2M
B
4M
B
8M
B
16
MB
32
MB
64
MB

12
8M
B

25
6M
B

51
2M
B
1G
B

L
at

en
cy

 (u
s)

Data Size

NCCL Blink

Figure 27. Allreduce Latency in µs (Blink and NCCL2) on a
16-GPU DGX-2.

nication channels from NVLink to PCIe increases as the
number of GPUs grow. For 3 and 4 GPU settings, compared
with NVLink-only Broadcast, hybrid transfers can achieve
around 5GB/s boost; with 7 and 8 GPUs this boost is only
around 2GB/s. This is because the total time spent on en-
abling and disabling peer-access, i.e. switching between
PCIe and NVLink, is proportional to the number of GPU in
use.

A.4 DGX-2 Allreduce

We present above results comparing latency for AllReduce
operations when using 16 GPUs on a DGX-2 machine. As
described in Section 3.4, Blink uses a number of single-hop
trees to perform AllReduce when GPUs are connected using
NVSwitch. One of the main advantages of a single-hop
tree is that this reduces latency compared to using a ring
across the GPUs. To validate this we measure the latency
of AllReduce and vary the dataset size from 1KB to 1GB
as shown in Figure 27. We find that Blink is especially
effective for smaller data sizes offering up to 3.32× lower
latency compared to NCCL’s double-binary trees and rings.

