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ABSTRACT
Advancements in deep neural networks (DNNs) and wide-
spread deployment of video cameras have fueled the need for
video analytics systems. Despite rapid advances in system
design, existing systems treat DNNs largely as “black boxes”
and either deploy models entirely on a camera or compress
videos for analysis in the cloud. Both these approaches affect
the accuracy and total cost of deployment. In this position
paper, we propose a research agenda that involves opening
up the black box of neural networks and describe new ap-
plication scenarios that include joint inference between the
cameras and the cloud, and continuous online learning for
large deployments of cameras. We present promising results
from preliminary work in efficiently encoding the intermedi-
ate activations sent between layers of a neural network and
describe opportunities for further research.
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1 INTRODUCTION
The pervasive deployment of cameras has made analytics on
their video streams important for applications such as traffic
planning and retail store management. Video analytics is
thus becoming an important problem in the systems com-
munity, with efficient systems being built for processing on
live videos [1–3]. These systems are powered by advances
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Figure 1: Camera-only and cloud-only solutions. Im-
age resolution plays an important role: The 4K UHD
image (left) provides sufficient quality to detect the li-
cense plate, but is too big to be processed on camera
or sent over a network. The compressed HD version
(right) is small enough to be processed on device or
sent to the cloud, but leads to inaccurate reading of
the license plate.
in deep neural networks (DNNs) on a variety of computer
vision tasks, including object detection and classification [4].

Despite the rapid advances in the area of video analytics
systems, current systems treat DNNs largely as “black boxes”.
DNNs are generally trained offline with pre-collected data
in a datacenter, then deployed in one atomic piece wherever
the video can be analyzed, e.g., a datacenter or increasingly
cameras in the field, with the latter trend fueled by cameras
equipped with compute capacities on board [5, 6].
The treatment of DNNs as atomic units of execution im-

pacts their inference. For DNN inference, either sufficient
network links have to be provisioned to get video to the
cloud before they are inferred, or the DNN models have to
be compressed to fit inside the cameras (at the expense of
lower accuracy).
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Figure 2: The split-brain architecture, in which the DNN is split into two parts. The edge device evaluates the
first part, which consists of the first N layers of the DNN. The resulting activations at the end of this part are
compressed and sent over to the cloud. Upon arrival, the cloud decompresses the activations and resumes the
evaluation of the DNN. The compression is stateful and exploits the similarities with previously transmitted data
to compress the activations further.

In this position paper, we propose a research agenda that
involves opening up the black box of neural networks. If the
techniques of networked systems and mobile communica-
tions can successfully be brought to bear on the signals sent
between neurons in a DNN, it would allow for a practical
realization of new applications. These include joint inference
between the cameras and the cloud given limits on local com-
putation and on communications bandwidth, and continuous
online learning for large deployments of cameras.
Split-brain inference. Existing video analytics systems
might run the vision DNNs entirely on the cameras (or other
edge device) – but will be computationally limited in their
resolution, frame rate, and model size. This compromises
their ability to recognize small, distant, or short-lived visual
features. On the other hand, the camera might instead com-
press the video and send it to a datacenter to evaluate the
DNN. However, compressing the entire source video to meet
bandwidth limits will also compromise end-to-end accuracy
(see Figure 1).

We propose “split-brain” inference, where video is pro-
cessed partly on the camera, subject to a limit on compu-
tation. Then, intermediate values are transmitted, limited
by network capacity, to a cloud datacenter for further DNN
inference. While prior work has proposed splitting work
between mobile devices and the cloud (e.g., [7]) as well as
geo-distributed data analytics [8–10], a key difference in
DNN inference is data amplification. The size of interme-
diate data (activations of the DNNs) is far higher than the
input size (by up to 4500×), in contrast to mobile and data
analytics systems, making it challenging to identify a “split
point” for the cloud.

New research is required to develop compression schemes
and to train an encoder for DNN intermediates, subject to
constraints on local compute, data rate, and overall accuracy.
These schemes will have to be optimized for DNN accuracy
as opposed to the traditional focus on human viewing (like
the H.264 encoder). Preliminary results, with the compres-
sion scheme we are developing, show a promising two to

three orders of magnitude reduction in the size of the inter-
mediate data. As Figure 3 shows, we also bring the compute-
communication tradeoff into an interesting region where the
data communicated after splitting the DNN is lower than the
cloud-only JPEG-compressed baseline and the computation
needed on the camera (including compression costs) is less
than running the entire DNN; details in §3 and §4.

2 BACKGROUND AND RELATEDWORK
Background on DNNs. DNNs achieve state of the art accu-
racy on many salient computer vision tasks, e.g. objection
detection, action recognition, and semantic segmentation,
with results surpassing classical computer vision solutions
and often matching those by humans. DNNs are composed
of many “layers”; the neurons in each layer consume the
output of one or more of the layers preceding it. A DNN
consists of many different kinds of layers (e.g., convolutions
or fully-connected layers) and each layer transforms its in-
put according to model parameters of the DNN and is typi-
cally followed by a nonlinear activation function (e.g., ReLU,
TanH). The intermediate output produced by each layer is
commonly referred to as its activations. As the layers succes-
sively process the input, they gradually build up high level
semantic information until a final prediction is produced.
The size of intermediate outputs through the layers is typi-
cally amplified, i.e., significantly larger than the input image.
(More in §3.)

Contemporary DNNs have millions of model parameters
(e.g. ResNet50, a relative small DNN, has 25M parameters)
and are compute and memory intensive. The large model
sizes introduce network constraints when they are shipped to
the camera. Modern DNNs require special purpose hardware
for fast and power-efficient inference and training.
Related Work.
Mobile DNN Architectures. [11–13] investigate changes

to the convolutional layer to reduce its expense. While the
proposed optimizations improve compute and memory effi-
ciency, they often come at the expense of accuracy [4].



DNN Model Compression and Specialization. DNN model
parameters and activations have conventionally been stored
as 32-bit floats (FP32). [14–16] explore approaches to reduce
the numerical precision of data and operations in DNNs.
While effective, these methods are not sufficient for imple-
menting tasks such as split-brain inference (see Figure 4).
Model specialization [1, 17] also attempts to achieve much
smaller DNNs or DNNswith small activation sizes. This, how-
ever, requires continuous updating of the models to maintain
accuracy.

Cloud offloads from mobile devices. Project MAUI was one
of the earliest works to explore the idea of offloading com-
pute from mobile devices to the cloud [7, 18–20]. MAUI’s
focus was on fine-grained code offload to nearby servers
with minimal programmer effort. All these systems focused
on tasks without data amplification; as a result, data transfer
during the offload was not a major concern. [21] presents
a solution for offloading DNNs for older architectures (e.g.,
AlexNet, VGG); these DNNs offer a natural split point at
their fully connected (FC) layers and do not suffer from data
amplification to the same degree as comtemporary DNNs.
State-of-the-art DNNs (e.g., ResNet, MobileNet) make use
of global average pooling (which reduces the computational
costs of FC layers) and have much larger intermediate activa-
tions, so splitting before the FC layers is no longer a practical
option.
Geo-distributed Data Analytics. Geo-distributed data ana-

lytics systems run big data jobs over many datacenters and
edge servers connected via wide-area links [8–10]. While
these systems balance between compute and communica-
tion constraints at each site, they often rely on the property
of big data jobs where the amount of intermediate data re-
duces with the stages of the job (not amplifies, like in a DNN
execution).
Compression/network codesign. Past work has focused on

codesigning video-compression systems with video applica-
tions to optimize human-perceptible measures of quality [22].
We suspect similar gains may be had in codesigning video
compression with DNN pipelines to optimize arbitrary ML
loss functions.

3 SPLIT-BRAIN INFERENCE OF DNNS
System designers today use one of two approaches to meet
the demands of resource-hungry DNNs in camera systems.
• Camera-only: Fully equip the camera with the compute

and memory resources needed to run the DNN locally.
• Cloud-only: Outsource the computation of the DNN

to a remote datacenter by compressing and sending
video frames over the Internet.

These two approaches present extreme points on the de-
sign spectrum and we next outline the disadvantages with

Our preliminary 

results

Figure 3: Preliminary results for split-brain DNN in-
ference. We plot the local computation (x-axis, using
a single Xeon E5-2687W core) and data rate across the
split (y-axis); all points have the same end-to-end ac-
curacy. Shown above are various ways to split execu-
tion of the MobileNet DNN [11] to detect and localize
objects in a video frame. It can run entirely locally
(“local-only”). The device could JPEG-compress the
frames and send them to the cloud (“cloud-only”). Our
results using non-linear quantization, entropy coding
and transforms to the DNN intermediates are promis-
ing in the compute and communication costs relative
to the two baselines.
each of the design approaches. We propose splitting DNN
inference across devices in the field and datacenters to al-
low for greater flexibility in navigating the tradeoffs. This
approach is illustrated in Figure 2 and makes it possible
to consider the entire design spectrum taking into account
tradeoffs between communication, computation and DNN
accuracy.
Camera-only DNN Inference. The camera-only approach
requires the cameras to be capable of running a target DNN
without assistance using only local compute and memory
resources. Modern DNNs, however, require special purpose
hardware accelerators (e.g. GPUs, FPGAs [23], TPUs [24])
to run in real time (≥ 30 frames/sec) on HD videos (≥ 720p
resolution). Even with recent developments in DNNs opti-
mized for mobile processors, models like SSDLite [11] used
for object detection run at less than 5 fps on very low resolu-
tion videos; operating on 720p video would make them over
15× slower. Fitting cameras with beefy accelerators would
considerably increase their costs and energy consumption.

Compressing models to run entirely on wimpier hardware
on the cameras can also lead to degraded accuracy. For exam-
ple, when the popular object detector, YOLO, is compressed
for its “tiny” version, the mean average precision drops by
over 50% to achieve the computational savings [4].
Finally, even when it is possible to fully provision the

cameras with the resources necessary to run DNNs at high
frame-rate and resolution, many applications have bursty
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Figure 4: When performing inference on 1280x720
video, the intermediate results produced by the layers
of DNNs are 19-4500x larger than the compressed in-
put video. ResNet152 [25] is a conventional DNN and
its intermediates are stored with 32 bits per element.
MobileNetV2 [11] andTSQ [16]were both designed for
mobile/low-memory environments, and use 16 bits
and 2 bits per element respectively. Despite the im-
provement compared to conventional DNNs, the size
of the intermediates are too large to feasibly send in
place of the compressed video.

usage patterns. Provisioning such cameras with the full hard-
ware capabilities to perform inference locally is wasteful.
Cloud-only DNN Inference. In the cloud-only approach,
devices compress and send video frames over a bandwidth-
limited communications channel (e.g. 3G, LTE, Wi-Fi) to a
remote cloud location for DNN inference. This approach
eliminates the need for DNN inference to run on cameras,
but necessitates provisioning network links with sustained
high capacity for HD videos.

Not performing any of the inference work on the camera
proportionately increases the processing requirements on
cloud infrastructure, which increases the overall costs (in
addition to the network costs). For reference, performing
object recognition using ResNet152 [25] in the cloud costs
$250 per month per camera [26].
Finally, DNNs can only perform high accuracy inference

if the compressed video sent from the cameras to the cloud
faithfully preserves the salient visual features of the raw
video. In environments with poor network link capacities
(70% of all mobile connections in 2017 transited 2G and 3G
networks [27]), the visual artifacts introduced by compres-
sion can reduce the accuracy of DNNs considerably.
Split-brain Inference between camera and cloud. We
propose a new approach for DNN inference in intelligent
systems, the “split-brain” architecture, where the computa-
tion of a DNN is divided between the camera in the field and
a cloud datacenter. The objective is to not necessarily make
the DNN fit within the camera’s constraints but instead rely
on the cloud for “overflow” capacity. The intermediate result

from applying part of a DNN is transmitted between the two
collaborating parties during operation; see Figure 2.

A naïve implementation of the split-brain approach would
be impractical; many common DNNs (e.g. AlexNet [28],
ResNet [25], YOLO [29], MaskRCNN [30]) represent their in-
termediates as an uncompressed 3D-array of 32-bit floating
point numbers. As a result, the size of the DNN intermedi-
ates is considerably higher than the input, a phenomenon
we refer to as data amplification.

The intermediate output produced by the first layer of
ResNet152 is (640×360×64) FP32 numbers is 21× the size
of the raw (1280×720×3) RGB frame input. Further, as illus-
trated in Figure 4, compared to the average frame size when
compressed with a standard video codec (as is usually the
case) like H.264, the intermediates are up to 4500× bigger.
(Note that the y-axis in Figure 4 is log-scale.) We observe
two more noteworthy characteristics from Figure 4: (1) The
size of the intermediates continue to be high throughout the
different layers (x-axis). (2) Even with DNNs that are opti-
mized for weak devices, e.g., MobileNetV2 and TSQ, the size
of the intermediates are still one to two orders of magnitude
higher than the average video frame size.

Data amplification is a key difference in our problem setup
on splitting DNN executions compared to many prior works
that split computations between devices and the cloud [7, 18–
20]. In mobile applications as well as big data jobs [8–10], the
key to the splitting is intelligently identifying the point in
the computation pipeline where the amount of data reduces.
However, similar techniques are unlikely to be effective in
DNNs due to data amplification.
Preliminary Results: We start by applying simple tech-
niques from signal processing including: (a) quantization,
where intermediates are encoded using fewer floating point
bits (b) transformations like discrete cosine transform (DCT)
and KL transform that concentrate the signal in a few com-
ponents and (c) compressing the results using techniques
like Huffman coding and arithmetic coding.

As highlighted earlier in Figure 3, the key result from our
preliminary investigation is that we can split the DNN in-
ference such that the amount of communication out of the
camera and compute on the camera is less than the cloud-
only and camera-only baselines. This makes DNN splitting
an amenable solution and we also plot results from splitting
at three different points with varying compute and com-
munication costs in Figure 3. We achieve this despite data
amplification with our preliminary compression techniques
providing two to three orders of magnitude (depending on the
split-point) gains compared to MobileNet DNN [11].

It is to be noted that prior attempts at reducing the size of
DNN intermediates [16, 31] do not compare favorably with
existing image codecs and result in the intermediates, after
compression, still being larger than the cloud-only baseline



Figure 5: Intermediates of a DNN at frames that are
one second apart. Like the input video, there are tem-
poral similarities across DNN intermediates, which
presents opportunities for compression.

(i.e., above the red point in Figure 3). Thus, we believe that
our result of bringing the intermediate data into the useful
trade-off region is a promising initial result.

4 CHALLENGES AND OPPORTUNITIES
Wenext outline a number of opportunities to further improve
the split-brain approach described in §3 and some of the
challenges in deploying a such a split-brain model.
1) Encoding across channels. Our results in the previ-
ous section looked at applying traditional compression ap-
proaches to DNN intermediates. DNN intermediates are typ-
ically the outputs from a bank of convolution filters and are
hence three-dimensional. For example, in case of the Resnet-
152, starting with images of size 224x224 with 3 (RGB) chan-
nels, each convolutional layer consists of a number of filters
(each 7x7 or 3x3 depending on the layer). State-of-the-art
DNNs often have a number of filters at each layer; the third
convolutional batch in Resnet-152 has 128 filters leading to
intermediate outputs of size 28x28x128. We refer to this third
dimension as channels.
In our results in §3, compression algorithms are applied

to each channel independently. However, as not all feature
detectors learn unique features at each layer and often there
is considerable similarity across channels, which we also
verify empirically in our experiments. We intend to leverage
this similarity in our encoding algorithms for compression.
2) Inter-frame Encoding. Video codecs like H.264 exploit
repeated patterns between frames while encoding videos.
We believe similar inter-frame encoding techniques could

be applied to DNN intermediates. As the set of active ob-
jects changes relatively infrequently over time, DNN inter-
mediates are also similar across frames, likely with higher
similarity than the raw frames themselves.

Figure 5 shows an example where we see strong temporal
correlations between DNN intermediates of temporally ad-
jacent frames. As deeper layers of a DNN represent coarser
features about objects in the frame, there is often more simi-
larity and hence more room for compression of intermediates
at deeper layers.
3) Beyond visual encoding. We predict that in the future,
most video and images will never be seen by a human. In-
stead, the data produced by these systems will be consumed
solely by algorithms. Current approaches that encode and
lossily compress visual data (e.g., JPEG, MP3, and H.264)
were designed to optimize figures of merit relevant to a hu-
man viewer (perceptual picture quality, smoothness, etc.),
and not the high-level objective of a DNN.

We believe that there is potential for new encoding schemes
that will be designed for the scenario where data is only
consumed by algorithms. For example, if we have a object
detector in a traffic camera that is deployed to get real-time
traffic volumes, any background data like roads and trees
can be eliminated by the encoder during compression if it
does not affect the accuracy of the traffic counts. We plan to
approach this as an end-to-end optimization problem where
the encoding scheme and the object recognition models are
jointly trained for high accuracy and compression.
4) Communication/Computation Trade-off. Deploying
a split-brain architecture would involve determining the
optimal split point given a camera deployment and DNN
model. While some aspects like the amount of camera com-
pute available can be determined before deployment, other
aspects like the wide-area bandwidth available [8] or price
of cloud computing resources will fluctuate over time. Thus,
techniques to dynamically change the split point in DNN
will need to account for compute and network resources
currently available. In doing so, we intend to dynamically
tweak our compression such that it results in, say, lower data
transmission potentially at the expense of slightly reduced
accuracy of the DNN. We also plan to draw up prior work in
mobile systems in estimating the available resources before
splitting [7, 18, 20].
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