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ABSTRACT

In this paper, we propose Airshark—a system that detects
multiple non-WiFi RF devices in real-time and using only
commodity WiFi hardware. To motivate the need for
systems like Airshark, we start with measurement study
that characterizes the usage and prevalence of non-WiFi
devices across many locations. We then present the design and
implementation of Airshark. Airshark extracts unique features
using the functionality provided by a WiFi card to detect
multiple non-WiFi devices including fixed frequency devices
(e.g., ZigBee, analog cordless phone), frequency hoppers
(e.g., Bluetooth, game controllers like Xbox), and broadband
interferers (e.g., microwave ovens). Airshark has an average
detection accuracy of 91-96%, even in the presence of
multiple simultaneously active RF devices operating at a
wide range of signal strengths (—80 to —30 dBm), while
maintaining a low false positive rate. Through a deployment
in two production WLANs, we show that Airshark can be
a useful tool to the WLAN administrators in understanding
non-WiFi interference.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]:
Communication

Wireless

General Terms

Design, Experimentation, Measurement, Performance

Keywords
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1. INTRODUCTION

The unlicensed wireless spectrum continues to be home
for a large range of devices. Examples include cordless
phones, Bluetooth headsets, various types of audio and video
transmitters (security cameras and baby monitors), wireless
game controllers (Xbox and Wii), various ZigBee devices (e.g.,
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Figure 1: Degradation in UDP throughput of a good quality WiFi

link (WiFi transmitter and receiver were placed 1m apart) in
the presence of non-WiFi devices operating at different signal
strengths.
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Figure 2: Average RSSI from different non-WiFi RF device
instances shown against the device start times. Measurements
were taken at a dorm-style apartment (location L16, dataset §2)
for a 24 hour period.

for lighting and HVAC controls), even microwave ovens, and
the widely deployed WiFi Access Points (APs) and clients.
Numerous anecdotal studies have demonstrated that links
using WiFi, which is a dominant communication technology
in this spectrum, are often affected by interference from all of
these different transmitters in the environment. In Figure 1,
we present results from our own experiments where a single,
good quality WiFi link was interfered by different non-WiFi
devices—an analog phone, a Bluetooth device, a videocam,
an Xbox controller, an audio transmitter, a frequency hopping
cordless phone, a microwave, and a ZigBee transmitter—when
placed at different distances from the WiFi link.

The figure shows the normalized UDP throughput under
interference, relative to the un-interfered WiFi link, as a
function of the interfering signal strength from these different
devices. While all of these devices impede WiFi performance
to a certain degree, some of these devices, e.g., the videocam
and the analog phone, can totally disrupt WiFi communication
when they are close enough (> 80% degradation at RSSI
> —70 dBm, and throughput drops to zero in some cases).



Furthermore, our measurements across diverse home, office,
and public environments, and over many weeks, show that
many of these devices are routinely visible at all times of the
day often at significantly high signal levels to be disruptive to
WiFi links. Figure 2 shows an example of non-WiFi RF activity
in a dorm-style apartment building, where some respite is
observable only in the wee hours of the night.

Non-WiFi RF device detection: Traditional WiFi systems
(Access Points or clients) utilize various mechanisms in
the 802.11 MAC to detect and avoid interference from
other WiFi sources, and are largely oblivious to non WiFi
sources. However, with the continued growth of non-WiFi
activity in this shared unlicensed band and the consequent
impact on WiFi performance, hardware vendors and network
administrators are increasingly exploring techniques to better
detect non-WiFi sources of interference. Among commercial
systems, Spectrum XT [2], AirMaestro [3], and CleanAir [4]
are examples of custom hardware systems that integrate
unique spectrum analyzer functionality to facilitate non-WiFi
device detection. In the research community, work by Hong
et. al. [17] utilizes a modified channel sounder and associated
cyclostationary signal analysis to detect non-WiFi devices.
RFDump [21] uses USRP GNU Radios and phase/timing
analysis along with protocol specific demodulators to achieve
similar goals. In this paper, we focus on techniques to
detect non-WiFi RF devices but using commodity WiFi
hardware instead of more sophisticated capabilities available
in dedicated spectrum analyzers, expensive software radios,
or any additional specialized hardware.

Using commodity WiFi hardware for non-WiFi RF device
detection: Commercial spectrum analyzers or software radio
platforms have specialized capability of providing “raw signal
samples” for large chunks of spectrum (e.g., 80—100 MHz)
at a fine-grained sampling resolution in both time domain
(O(10°) to O(10°) samples per second) and frequency domain
(as low as 1 kHz bandwidth). In contrast, commodity WiFi
hardware, can provide similar information albeit at a much
coarser granularity. For instance, Atheros 9280 AGN cards,
as available to us, can only provide RSSI measurements for
an individual WiFi channel (e.g., a 20 MHz channel) at a
resolution bandwidth of OFDM sub-carrier spacing (e.g., 312.5
kHz), and at a relatively coarse timescale (O(10%) to O(10%)
samples per second). This capability is part of the regular
802.11 frame decoding functionality. If we can design efficient
non-WiFi device detection using signal measurement samples
drawn from commodity WiFi hardware, then it would be easy
to embed these functionalities in all WiFi APs and clients.
By doing so, each such WiFi AP and client can implement
appropriate mitigation mechanisms that can quickly react to
presence of significant non-WiFi interference. The following
are some examples.

1) A microwave oven, which typically emits high RF energy
in 2.45-2.47 GHz frequencies, turns on in the neighborhood of
an AP (operating on channel 11) significantly disrupting the
throughput to its clients. The AP detects this microwave, infers
its disruptive properties, and decides to switch to a different
channel (say, 1).

2) An AP-client link experiences short term interference from
an analog cordless phone in a narrowband (< 1 MHz). The
AP detects the analog phone and its characteristics, and hence
decides to use channel width adaptation functions to operate

on a narrower, non-overlapping 10 MHz channel instead of
the usual 20 MHz channel.

Summarizing, if non-WiFi device detection is implemented
using only commodity WiFi hardware, both these examples
are possible natively within the AP and the client without
requiring any additional spectrum analyzer hardware (either
as add-on boards or chipsets) to be installed in them.

Our proposed approach — Airshark

Motivated by the above examples, we propose Airshark, a
system that detects non-WiFi RF devices, using only the
functionality provided by commodity WiFi hardware. Airshark,
therefore, is a software-only solution which addresses multiple
goals and challenges described next.

1) Multiple, simultaneously active, RF device detection: While
Airshark can most accurately detect individual non-WiFi RF
devices, it is also designed to effectively discern a small number
of simultaneously operating non-WiFi devices, while keeping
false positives low.

2) Real-time and extensible detection framework: Airshark
operates in real-time allowing the WiFi node to take immediate
remedial steps to mitigate interference from non-WiFi devices.
In addition, its detection framework is extensible—adding
hitherto unknown RF device profiles requires a one-time
overhead, analogous to commercial systems based on spectrum
analyzers [3].

3) Operation under limited view of spectrum: Being
implemented using commodity WiFi hardware, Airshark
assumes that typically only 20 MHz spectrum snapshots
(equal to the width of a single WiFi channel) are available
for its use in each channel measurement attempt. This
limitation implies that Airshark cannot continuously observe
the entire behavior of many non-WiFi frequency hoppers (e.g.,
Bluetooth). Further, the resolution of these samples are at
least 2 orders of magnitude lower than what is available
from more sophisticated spectrum analyzers [1] and channel
sounders [17]. In addition to this low sampling resolution,
we also observed infrequent occurances of missing samples.
Finally, various signal characteristics that are available through
spectrum analyzer hardware (e.g., phase and modulation
properties) are not available from the commodity WiFi
hardware. Therefore, Airshark needed to operate purely
based on the limited energy samples available from the WiFi
cards, and maintain high detection accuracy and low false
positives despite these constraints.

Overview of Airshark: Airshark overcomes these chal-
lenges using several mechansisms. It uses a dwell-sample-
switch approach to collect samples across the spectrum (§3.1).
It operates using only energy samples from the WiFi card
to extract a diverse set of features (§3.3) that capture the
spectral and temporal properties of wireless signals. These
features are robust to changes in the wireless environment and
are used by Airshark’s light-weight decision tree classifiers to
perform device detection in real-time (§3.4). We systematically
evaluate Airshark’s performance in a variety of scenarios, and
find its performance comparable to a state-of-the-art signal
analyzer [3] that employs custom hardware.

Key contributions
In this work, we make the following contributions:

e Characterizing prevalance of non-WiFi RF devices. To
motivate the need for systems such as Airshark, we first



RF Device Category Device Models (set up)

Airshark’s Accuracy
(low RSSI — high RSSI)

High duty, fixed frequency devices — spectral signature, duty, center frequency, bandwidth

Analog Cordless Phones
Wireless Video Cameras
Frequency hoppers — pulse signature, timing signature, pulse spread

Bluetooth devices (ACL/SCO)

FHSS Cordless Base/Phones
Wireless Audio Transmitter
Wireless Game Contollers

Broadband interferers — timing signature, sweep detection

Microwave Ovens (residential) (i) Whirlpool MT4110, (ii) Daewoo KOR-630A, (iii) Sunbeam SBM7500W (heating water/food)

Variable duty, fixed frequency devices — spectral signature, pulse signature
ZigBee Devices

Uniden EXP4540 Compact Cordless Phone (phone call)
Pyrus Electronics Surveillance Camera (video streaming)

Bluetooth-enabled devices: (i) iPhone, (ii) iPod touch, (iii) Microsoft notebook mouse 5000,
(iv) Jabra bluetooth headset (data transfer/audio streaming)

Panasonic 2.4 KX-TG2343 Cordless Base/Phones (phone call)

GOGroove PurePlay 2.4 GHz Wireless headphones (audio streaming)

(i) Microsoft Xbox, (ii) Nintendo Wii, (iii) Sony Playstation 3 (gaming)

Jennic JN5121/JN513x based devices (bulk data transfer)

97.73%—100%
92.7%—99.82%

91.63%—99.46%
96.47%—100%
91.23%—99.37%
91.75%—99%
93.16%—99.56%

96.23%—99.12%

Table 1: Devices tested with the current implementation of Airshark. Features used to detect the devices include: Pulse signature
(duration, bandwidth, center frequency), Spectral signature, Timing signature, Duty cycle, Pulse spread and device specific features
(e.g., Sweep detection for Microwave Ovens). Accurac y tests were done in presence of multiple active RF devices and RSSI values range

from —80 dBm (low) to —30 dBm (high).

performed a detailed measurement study to characterize
the prevalence of non-WiFi RF devices in typical envi-
ronments — homes, offices, and various public spaces.
This study was conducted for more than 600 hours over
several weeks across numerous representative locations
using signal analyzers [3] that establish the ground truth.

e Design and implementation of Airshark to detect non-WiFi
RF devices. Airshark extracts a unique set of features
using the functionality provided by a WiFi card, and
accurately detects multiple RF devices (across multiple
models listed in Table 1) while maintaining a low false
positive rate (§4). Across multiple RF environments,
and in the presence of multiple RF devices operating
simultaneously, average detection accuracy was 96% at
moderate to high signal strengths (>—60 dBm). At low
signal strengths (—80 dBm), accuracy was 91%. Further,
Airshark’s performance is comparable to commercial
signal analyzers (§4.1.6).

e Example uses of Airshark. Through a deployment in two
production WLANs, we demonstrate Airshark’s potential
in monitoring the RF activity, and understanding perfor-
mance issues that arise due to non-WiFi interference.

To the best of our knowledge, Airshark is the first system
that provides a generic, scalable framework to detect non-
WiFi RF devices using only commodity WiFi cards and enables
non-WiFi interference detection in today’s WLANSs.

2. CHARACTERIZING PREVALENCE OF
NON-WIFI RF DEVICES

In this section, we aim to characterize the prevalence and
usage of non-WiFi RF devices in real world networks. First, we
describe our measurement equipment, and data sets.

Hardware. We use AirMaestro RF signal analyzer [3] to
determine the ground truth about the prevalence of RF
devices. This device uses a specialized hardware (BSP2500
RF signal analyzer IC), which generates spectral samples
(FFTs) at a very high resolution (every 6 us, with a resolution
bandwidth of 156 kHz) and performs signal processing to
detect and classify RF interferers accurately.

— “Ground truth” validation. Before using AirMaestro to
understand the ground truth about the prevalence of non-
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Figure 3: Distribution of (i) non-WiFi device instances/hour
at different locations (top), and (ii) RSSI of non-WiFi devices
at these locations (bottom). Min, Max, 25th, 50th and 75th
percentiles are shown.

WiFi devices, we benchmarked its performance in terms of (i)
device detection accuracy and (ii) false positives. We activated
different combinations of RF devices (up to 8 devices, listed in
Table 1) by placing them at random locations and measuring
the accuracy at different signal strengths (up to —100 dBm).
Measurements were done during late nights to avoid any
external non-WiFi interference. Our results indicate an overall
detection accuracy of 98.7% with no false positives. The few
cases where AirMaestro failed to detect the devices occurred
when the devices were operating at very low signal strengths
(< —90 dBm).

Data sets. We collected the RF device usage measurements
using the signal analyzer at 21 locations for a total of 640
hours. We broadly categorize these locations into three
categories: (i) cafes (L1-L7): these included coffee shops,
malls, book-stores (ii) enterprises (L8-L14): offices, university
departments, libraries and (iii) homes (L15-L21): these
included apartments and independent houses. Measurements
were taken over a period of 5 weeks. At some locations, we
could collect data for more than 24 hours (e.g., enterprises,
homes) but for others we could collect measurements only
during the day times (e.g., coffee shops, malls). We now
summarize our observations from this data.

Non-WiFi devices are prevalent across locations and often appear
with fairly high signal strengths.

Figure 3 (top) shows the distribution of non-WiFi device
instances observed per hour in different wireless environments.
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Figure 5: Distribution of (a) Session durations of the non-WiFi
device instances (X-axis in log-scale) and (b) RSSIs of the non-
WiFi device instances aggregated across all locations.

We observe that device instances/hr. varied across locations,
with some locations showing very high device activity (e.g.,
a median of 22, 16 instances/hr. at locations L10 (an office),
L16 (dormitory) respectively). Figure 3 (bottom) shows the
distribution of non-WiFi device RSSI at these locations'. We
observe that the median RSSI varied from —80 to —35 dBm.
Further, for around 62% locations, we observe that 75th
percentile of RSSI was greater than —60 dBm (shown using a
gray line) suggesting strong non-WiFi interference.

Popularity of devices varied with locations, although few devices
are popular across many locations.

Figure 4 shows the distribution of non-WiFi instances
at different locations. Microwaves, FHSS cordless phones,
Bluetooth devices and game controllers were the most popular.
However, some other devices appeared frequently at specific
locations e.g., video cameras accounted for 29% of instances
at location L4 (cafe).

Session durations for non-WiFi devices varied from a few seconds
to over 100 minutes.

Figure 5 (left) shows the CDF of the session times for each
class of non-WiFi devices. Many devices appear in our traces
for a short duration (< 2 minutes). These included (i) devices
like microwaves that are activated for short durations and
(ii) device instances with low signal strengths (< —75 dBm)
that appeared intermittently at the locations where the signal
analyzer was placed. However, for 25% of the cases, the
devices were active for more than 5 minutes and in some
traces, devices like game controllers (e.g., Xbox) were active
for durations of up to 1.8 hours.

10Observed RSSI is dependent on the exact location where the
measurement node was placed. While we tried to be unbiased,
node placement in reality was influenced by few factors like
availability of power connection.
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Figure 7: Distribution of (a) quiet and busy periods (b)
simultaneously-active devices during the busy periods across
different locations

Some of the devices operate at high signal strengths indicating
potential interference.

Microwave ovens, video cameras, and analog phones were
the most dominant in terms of RSSI (Figure 5 (right)). For
e.g., RSSI was > —55 dBm for more than 35% of the observed
microwave oven instances, indicating potential interference to
nearby WiFi links. Wireless game controllers and Bluetooth
devices on the other hand, mostly occurred at low to moderate
RSSI of —80 to —65 dBm.

More than 50% of the periods with no non-WiFi device activity
were less than 10 minutes.

We define a quiet period as a duration in which no non-WiFi
devices were active. Figure 6 (top) shows the CDF of the
quiet periods for locations (homes, enterprises) at which we
collected data for 48 hours. The figure shows that non-WiFi
devices appeared quite frequently—more than 50% of the quiet
periods were less than 10 minutes, and maximum quiet period
in our trace was 8 hours at L12 (office). Figure 6 (middle,
bottom) shows a 24 hour time-series of the number of active
non-WiFi devices/min. at L14 (enterprise) and L18 (home)
respectively. We observe that the longer quiet periods occurred
during late nights to early mornings (3 am to 8 am), and most
of the non-WiFi device activity was during the daytime, when
WiFi utilization is also typically significant.



At most locations, only 1 or 2 non-WiFi devices were active
simultaneously for more than 95% of the busy times.

Figure 7 (left) shows that the aggregate quiet times
(percentage time with no non-WiFi activity) vary at different
locations. In many locations, the aggregate quiet times were
around 70—80% i.e., non-WiFi devices were visible for 20—30%
of the time. Quiet times were much lesser for cafes (e.g., only
3% at L4) as the traces did not include the measurements
during the night times and there was frequent microwave
oven and cordless phone activity when we collected the traces
(during the day time). Figure 7 (right) shows the distribution
of the number of active non-WiFi devices per minute, during
the busy times (periods with non-WiFi activity). We find that
only a single device was active for 35% (L2, cafe) to 99%
(L20, home) of the time, and more than 2 devices were active
simultaneously for at most 20% of the time (L9, office).

3. Airshark: DEVICE DETECTION

Prior work has developed device detection mechanisms
using commercial signal analyzers [3], channel sounders [17]
or software radios [21] which offer fine-grained, very high
resolution signal samples, typically collected using a wide-
band radio. We focus on designing such a system using
commodity WiFi cards. WiFi cards are capable of providing
similar spectrum data, albeit with limited signal information,
and 2 orders of magnitude lesser resolution compared to
signal analyzers. Traditionally, WiFi cards have not exposed
this functionality, but emerging commodity WiFi cards provide
an API through which we can access spectral samples—
information about the signal power received in each of
the sub-carriers of an 802.11 channel, which opens up the
possibility of detecting non-WiFi devices. Designing such a
detection system using WiFi cards, however, imposes several
challenges as discussed below.

Why is it hard to detect devices using WiFi cards?

— Limited spectrum view. Unlike sophisticated signal analyz-
ers [1,17] that can sample a wideband of 80—100 MHz (e.g.,
the entire 2.4 GHz band), current WiFi cards are designed
to operate in a narrowband (e.g., 20 MHz).

— Limited signal information. Current WiFi cards provide
limited signal information (e.g., the received power per
sub-carrier) compared to software radios that provide raw
signal samples. Thus traditional device detection approaches
like cyclostationary analysis [17], phase analysis or use of
protocol specific decoders [21] are not feasible.

— Reduced sampling resolution. WiFi cards have a resolution
bandwidth of 312.5 kHz (equal to sub-carrier spacing)
compared to signal analyzers [1] that offer resolution
bandwidths as low as 1 kHz. Further, WiFi cards also have
a lower sampling rate—our current implementation uses
~2.5k samples/sec, as opposed to that used by commercial
signal analyzers [3] (160k samples/sec) or prior work [21]
employing software radios (8 million samples/sec).

— Other challenges. Coupled with the above constraints,
the presence of regular WiFi packet transmissions in the
spectrum further increase the “noise” in the spectral samples,
making it more challenging to detect devices.

Overview. We wish to detect the presence of multiple
(simultaneously operating) non-WiFi devices in real-time. The
above challenges imply that Airshark is constrained to use the
limited signal information (spectral samples) provided by a

Delay minimum 25th pc. median 75th pc maximum
Inter-sample time 116us 116us 122us 147us 4.94 ms
Sub-band switching  12.2 ms 145ms 19.7ms 31 ms 163 ms
Table 2: Time between valid consecutive spectral samples and
time taken to switch sub-bands in our current implementation.

WiFi card and must employ light-weight detection mechanisms
that are robust to missing samples. We now present an overview
of Airshark’s device detection pipeline. Figure 8 illustrates the
four steps listed below.

1. Spectral samples from the WiFi card are generated using
a scanning procedure (§3.1). This procedure divides
the entire spectrum into a number of sub-bands and
generates spectral samples for each sub-band. Samples
that comprise only WiFi transmissions are “purged” and
remaining samples are passed to the next stage.

2. Next, spectral samples are processed to detect signal
pulses—time-frequency blocks that contain potential sig-
nals of interest, and collect some aggregate statistics based
on received power values (§3.2).

3. In this stage, we extract a set of light-weight and unique
features from the pulses and statistics (§3.3)—derived
using only received power values—that capture the spec-
tral and temporal properties of signals. Example features
include: spectral signatures that characterize the shape
of the signal’s power distribution across its frequency
band, inter-pulse timing signatures that measure the time
difference between the pulses, and device specific features
like sweep detection (used to detect microwave ovens).

4. In the final stage of the pipeline, the above features are
used by different device analyzers that employ decision
tree models (§3.4) trained to detect their target device.

We now explain the above detection procedure in detail.

3.1 Spectral Sampling

We start by explaining the details of sampling procedure
employed in our current implementation.

Spectral samples. We implement Airshark using an Atheros
AR9280 AGN wireless card. We use the card in 802.11n 20
MHz HT mode, where a 20 MHz channel is divided into 64
sub-carriers, spaced 312.5 KHz apart and the signal data is
transmitted on 56 of these sub-carriers. Each spectral sample
(FFT) generated by the wireless card comprises the power
received in 56 sub-carriers (FFT bins) and corresponds to a
17.5 MHz (56 x 0.3125 MHz) chunk of spectrum, which we
refer to as a sub-band. Additionally, the wireless card also
provides the timestamp ¢ (in us) at which the sample was
taken, and the noise floor at that instant.

Purging WiFi spectral samples. We efficiently filter the
spectral samples that comprise only WiFi transmissions as
follows: all the samples for which Airshark’s radio is able to
successfully decode a WiFi packet are marked as potential
candidates for purging. Airshark then reports a spectral
sample for further processing only if it detects non Wi-Fi
energy in that sample. To be more precise, if the radio is
receiving a packet, Airshark will not report the sample unless
the interference signal is stronger than the 802.11 signal being
received. One downside to this approach is that Airshark will
also report spectral samples corresponding to weak 802.11
signals that fail carrier detection. However, as we show in
83.3, this is not a problem as Airshark can filter out the
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(83.2). In the next stage, various features capturing the spectral and temporal properties of the signals are extracted (§3.3), and are
used by different device analyzers that employ decision tree models (§3.4) trained to detect their target RF devices.

samples relevant to non-WiFi transmissions by employing
device detection mechanisms. We term the samples reported
by Airshark after this purging step as valid spectral samples.

Scanning procedure. Airshark divides the entire spectrum
(e.g., 80 MHz) into several (possibly overlapping) sub-bands,
and samples one sub-band at a time. Our current implementa-
tion uses 7 sub-bands with center frequencies corresponding
to the WiFi channels 1, 3, 6, 9, 11, 13 and 14. Table 2 shows
(i) inter-sample time: the time between two consecutive valid
spectral samples (within a sub-band) and (ii) time taken
to switch the sub-bands. Increased gap in the inter-sample
time for a few samples (> 150us) is due to the nature of
the wireless environment—in the absence of strong non-WiFi
devices transmissions, intermittent interference from WiFi
transmissions causes gaps due to purged spectral samples.
Sampling gaps are also caused when switching sub-bands
(~ 20 ms on an average, and 163 ms in the worst case).

To amoritize the cost of switching sub-bands, Air-
shark employs a dwell-sample-switch approach to sampling:
Airshark dwells for 100 ms in each sub-band, captures the
spectral samples and then switches to the next sub-band.
As we show later, in spite of the increased gap for few
samples, we find the sampling resolution of current WiFi
cards to be adequate in detecting devices (across different
wireless environments) with a reasonable accuracy (§4). In
84, we demonstrate the adversarial case where strong WiFi
interference coupled with weak non-WiFi signal transmissions
can affect Airshark’s detection capabilities.

3.2 Extracting signal data

We now explain the next stage in the detection pipeline
that operates on the spectral samples to generate signal pulses,
along with some aggregate statistics.

“Pulse” Detection. Each spectral sample is processed to
identify the signal “peaks”. Several complex mechanisms
have been proposed for peak detection [11,16]. To keep our
implementation efficient, we use a simple and a fairly standard
algorithm [12,14]—peaks are identified by searching for “local
maximas” that are above a minimum energy threshold ~s,.
For each peak, the pulse detector generates a pulse as a set
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Figure 9: Illustration of the pulse detection and matching

procedure. Pulse detector processes the spectral sample at time
to to output two new pulses p3 and ps. New pulse p3 matches
with the active pulse p;, and results in extending p;. Active pulse
p2 is terminated as there is no matching new pulse, and new
pulse p4 is added to the active pulse list.

of contiguous FFT bins that surround this peak. A pulse
corresponds to a signal of interest, and its start and end
frequencies are computed as explained below.

— frequency and bandwidth estimation: Let k, denote the
peak bin and p(k,) denote the power received in this bin.
We first find the set of contiguous FFT bins [k}, k.] such
that k, < k, < k. and power received in each bin is (i)
above the energy threshold, v, and (ii) within §5 of the peak
power p(ky) i.e., p(k) > vs Ap(kp) — p(k) < d5Vk € [k, k.
The center frequency (CF) and the bandwidth (BW) of a
pulse corresponding to this peak bin can be characterized
by considering its mean localization and dispersion in the
frequency domain:
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The center frequency bin k. is computed as the center point of
the power distribution, and the frequency spread around this
center point is defined as the bandwidth B of the pulse. For
each peak, we restrict the bandwidth of interest to comprise
bins whose power values are more than ~; and are within
op of the peak power p(k,). We use this mechanism as it is
simple to compute and it provides reasonable estimates as we
show in §4. Based on the computed bandwidth, the start bin
(ks) and the end bin (k.) are determined. The pulse detector
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Figure 10: (a) Distribution of average power vs. frequency for

an analog cordless phone at different distances. (b) Spectral

signatures for the analog cordless phone are not affected for RSSI
values of > —80 dBm.

can potentially output multiple pulses for a spectral sample.
Each pulse in a spectral sample observed at time ¢ can be
represented using the tuple [¢, ks, ke, ke, [p(ks) ... p(ke)1]

Pulse Matching. Airshark maintains a list of active pulses for
the current sub-band. This active pulse list is empty at the
start of the sub-band, and the first set of pulses (obtained after
processing a spectral sample in the sub-band) are added to this
list as active pulses. For the rest of the samples in the sub-band,
a pulse matching procedure is employed: the pulse detector
outputs a set of new pulses after processing the sample. These
new pulses are compared against the list of active pulses to
determine a match. In our current implementation, we use a
strict criteria to determine a match between a new pulse and
an active pulse: the CFs and BWs of the new pulse and the
active pulse must be equal, and their peak power values must
be within 3 dB (to accommodate signal strength variations).
Once a match is determined, the new pulse is merged with the
active pulse to extend it i.e., the duration of the active pulse
is increased to accommodate this new pulse, and the power
values of the active pulse are updated by taking a weighted
average of power values of the new and the active pulse.

After the pulse matching procedure, any left over new
pulses in the current spectral sample are added to the active
pulse list. The active pulses that did not find a matching new
pulse in the current sample are terminated. Active pulses
are also terminated if Airshark encounters more than one
missing spectral sample (i.e., inter-sample time > 150 us).
Once an active pulse is terminated, it is moved to the current
sub-band’s list of completed pulses. It is possible that some
of the active pulses are prematurely terminated due to the
strict match and termination criteria. However, doing so helps
Airshark maintain a low false positive rate as it only operates
on well-formed pulses that satisfy this strict criteria (§4).
Figure 9 illustrates this pulse detection procedure.

Stats Module. The stats module operates independently of
the above pulse logic. It processes all the spectral samples of a
sub-band to generate the following statistics: (i) average power:
this is the average power in each FFT bin for the duration of
the sub-band, (ii) average duty: this is the average duty cycle
for each bin in the sub-band. The duty cycle of an FFT bin k
is computed as 1 if p(k)>~;, otherwise it is 0. (iii) high duty
zones: After processing a sub-band, a mechanism similar to
peak detection, followed by CF and BW estimation procedure
is applied on the “average power” statistic to identify the high

duty zones in the sub-band. These are used to quickly detect
the presence of high duty devices.

Before switching to the next sub-band, all the active pulses
for the current sub-band are terminated and pushed to the
list of the sub-band’s completed pulses. The list of completed
pulses along with the aggregate statistics are then passed on
to the next stage of the pipeline to perform feature extraction.

3.3 Feature Extraction

Using the completed pulses list and statistics, we extract a
set of generic features that capture the spectral and temporal
properties of different non-WiFi device transmissions. These
features—frequency, bandwidth, spectral signature, duty
cycle, pulse signature, inter-pulse timing signature, pulse
spread and device specific features like sweep detection—form
the building blocks of Airshark’s decision tree-based device
detection mechanisms. We now explain these features.

(F1) Frequency and Bandwidth. Most RF devices operate
using pre-defined center frequencies, and their waveforms
occupy a specific bandwidth. For e.g, a ZigBee device operates
on one of the pre-defined 16 channels [22], and occupies a
bandwidth of 2 MHz. The center frequency and bandwidth
of the pulses (and sub-band’s high duty zones) are used as
features in Airshark’s decision tree models.

(F2) Spectral signatures. Many RF devices also exhibit
certain power versus frequency characteristics. We capture
this using a spectral signature: given a set of frequency bins
[ks...ke] and corresponding power values [p(ks). . .p(ke)], if
we treat the frequency bins as a set of orthogonal axes, we can
construct a vector s’ = p(ks)ks + . . . + p(ke ) ke that represents
the power received in each of the bins. We then normalize
this vector to derive a unit vector representing the spectral
signature: § = % Given a reference spectral signature §, and

a measured spectral signature §,,, we compute the similarity
between the spectral signatures as the angular difference (6):
cos (5 - 8m). The angular difference captures the degree of
alignment between the vectors, and is close to 0° when the
relative composition of the vectors is similar.

Spectral signatures can be computed on the average power
values of the pulses (e.g., ZigBee pulse) or on the high duty
zones (e.g., for high duty devices like analog phones) to aid
in device detection. Figure 10 shows the power distribution
of an analog cordless phone at different distances, and the
corresponding spectral signatures computed at each distance.
The figure shows that normalization aids in making the
signatures robust to the changes in the signal strengths of the
RF devices. However, at very low signal strengths (< —90
dBm), the spectral signatures tend to deviate and result in an
increased theta, leading to false negatives (§4).

(F3) Duty cycle. The duty cycle D of a device is the fraction
of time the device spends in “active” state. This can be
used to identify high duty devices, e.g., analog phones and
wireless video cameras have D=1, or identify devices with
characteristic duty cycles e.g., microwave ovens have D=0.5.
In reality, due to the presence of multiple devices, it is possible
for the duty cycle of the bandwidth (FFT bins) used by a device
to be more than its expected duty cycle. We therefore use the
notion of minimum duty cycle D,,;,, for devices (D.,in=0.5
for a microwave oven) as one of the features.



Protocol/Device Bandwidth Duration Frequency usage
WDCT Cordless Phone 0.892KHz 700 ps FHSS, 90 channels
Bluetooth 1 MHz 366 us - 3 ms FHSS, 79 channels
ZigBee 2 MHz < 5ms Static, 16 channels
Game controller 500 KHz 235 pus FHSS, 40 channels

Table 3: Pulse signatures for different RF devices.
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Figure 11: Inter-pulse timing signature for different devices.
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Figure 12: Pulse distribution of FHSS cordless phone and an
audio transmitter as captured by Airshark.

(F4) Pulse signatures. Along with CF and BW, the
transmission durations of many devices conform to their
protocol standards. For e.g., in Bluetooth, the duration of a
transmission slot is 625 us, out of which 366 us is spent in
active transmission. Similarly, WDCT cordless phones (FHSS
phones) have a pulse duration of 700 us. Table 3 shows
these properties (frequency, bandwidth, and duration of the
pulses) for different devices. Airshark combines these three
properties together to define pulse signatures for devices that
communicate using pulses (e.g., ZigBee, Bluetooth) and uses
them as features in the detection process.

(F5) Inter-pulse timing signatures. Timing between the
transmissions of many devices also exhibit certain properties.
In Bluetooth SCO, for example, examining the spectrum
will reveal sets of two consecutive pulses that satisfy the
Bluetooth pulse signature (Table 3) and are separated by a
time difference of 625 us. WDCT cordless phones and game
controllers (e.g., Wii) exhibit similar properties with time
difference between consecutive pulses (occuring at the same
center frequency) in a set being 5 ms and 825 us respectively.
Similarly, microwaves exhibit an ON-OFF cycle with a period
of 16.6 ms. Figure 11 illustrates these timing properties.

Since Airshark can only sample a particular sub-band at
a time, it cannot capture all the pulses of a device. This is
especially true for frequency hopping devices. Due to the
nature of sampling, we cannot expect every captured pulse to
exhibit the above timing property. Airshark’s device analyzers
therefore use a relaxed constraint—number of pulse sets
that satisfy a particular timing property is used as one of the
features in the decision tree models (§3.4).

(F6) Pulse spread. Airshark accumulates the pulses for
a number of sub-bands, and extracts features from pulses
belonging to a particular pulse signature to detect the presence
of frequency hopping devices. Together, these features
represent the pulse spread across different sub-bands.

1. Pulses-per-band (mean and variance). We use the average
number of pulses per sub-band, and the corresponding
variance as one of the measures to characterize the pulse
spread. For frequency hoppers, we can expect the average
number of pulses in each sub-band to be higher (and the
variance lower) compared to fixed frequency devices.

2. Pulse distribution. Pulses of many frequency hopping
devices tend to conform to a particular distribution. For
example, FHSS cordless phone pulses are spread uniformly
across the entire 80 MHz band, whereas, the pulse distribution
for other frequency hoppers like audio transmitters may tend
to be concentrated on certain frequencies of sub-bands, as
shown in Figure 12. The X-axis shows the bin number b for
each of the seven sub-bands (bmer = 56 X 7 = 392), and
Y-axis shows the fraction of the pulses that fall into each bin.?

Airshark checks whether the distribution of pulses across
the sub-bands conforms to an expected pulse distribution
using Normalized Kullback-Leibler Divergence (NKLD) [20],
a well known metric in information theory. NKLD is simple
to compute and can be used to quantify the ‘distance’ or the
relative entropy between two probability distributions. NKLD
is zero when the two distributions are identical, and a higher
value of NKLD implies increased distance between the two
distributions. The definition of NKLD is assymetric, therefore
we use a symmetric version of NKLD [20] to compare two
distributions. Let r(b) be the reference pulse distribution
over all the bins (b € B = [0, bmaz]), computed over a large
period of time. Let m(b) be the measured pulse distribution
over a smaller time period t,,,. The symmetric NKLD for two
distributions r(b) and m(b) can be defined as:

_ 1/D(m(b)[|r()) . D(r(b)|m(b))
NKLD(n(8),r(8)) = 5 ( Hmb) | H0) )

where, D(m(b)||r(b)) quantifies the divergence and is com-

puted as 3, s m(b) ‘log T((bb))

the random variable b with distribution m(d) i.e., H(m(b)) =
— > pen M(b) logy m(b).

While Airshark can measure the pulse distribution m(b)
over a large time scale, and check if it conforms to r(b), this
will increase the time to detect the device. This leads to the
question, “what is the minimum time scale ¢,, at which the
pulse distribution can be measured?" We chose this time scale
by empirically measuring how the NKLD values converge
with the increase in the number of samples under different
conditions. For the devices that we tested, we observed around
15000 samples (around 6 scans of the entire 80 MHz band,
amounting to 6—7 seconds) was sufficient. We show how the
number of samples affect the NKLD values in §4.2.3. We note
that not all devices conform to a particular pulse distribution
e.g., in our experiments, we found variable pulse distributions
for Bluetooth as it employs adaptive hopping mechanisms.

, and H(m(b)) is the entropy of

(F7) Device specific features. Detection accuracy can be
improved by using features unique to the target device. We
illustrate this using a feature specific to microwave ovens.

— Sweep detector. The heating source in a residential

2Instead of measuring the actual pulse distribution over the
80 MHz band, we stitch the sub-bands together (ignoring
the overlaps) and measuring the pulse distribution over the
stitched sub-bands.
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Figure 13: Spectral samples from Airshark capturing the activity
of a residential microwave. The plot shows (i) the ON-OFF cycle
for is around 16.6 ms and (ii) “frequency sweeps” during the ON
periods.
microwave oven is based on a single magnetron tube that
generates high power electromagnetic waves whenever the
input voltage is above some threshold. This results in an
ON-OFF pattern, typically periodic with a frequency of 60
Hz (frequency of the AC supply line). Although there might
be differences between the emissions from ovens of different
manufacturers, the peak operational power is mostly around
2.45-2.47 GHz and during the ON periods, the radiated signal
exhibits a frequency sweep of around 4—6 MHz [19,27].

Figure 13 shows the resulting 16.66 ms periodic ON-OFF
pattern and the frequency sweeps during the ON periods of
a microwave oven as captured by Airshark. In the current
prototype of Airshark, the microwave oven analyzer includes
sweep detection, along with timing signature analysis. We
tested 6 microwaves (from different manufacturers), and
Airshark was able to detect all of them using these features.

3.4 Device Detection

Airshark uses decision tree [24] based classifiers in order
to detect the presence of RF devices. A decision tree is
a mapping from observations about an item (feature set)
to conclusions about its target value (class). It employs a
supervised learning model where a small set of labeled data,
referred to as training data, is first used to build the tree and
is later used to classify unlabeled data. In Airshark, we use the
popular C4.5 algorithm [24] to construct the decision trees.
For further details about mechanisms to build decision trees
and the classification process, we refer the readers to [24].

Airshark employs a separate analyzer for each class of
devices. These device analyzers operate on a subset of
features described previously, and make use of decision tree
classifiers trained to detect their corresponding RF devices.
The advantages of using per-device classifiers are three-fold:
(i) each classifier can use a separate feature subset, (ii)
classifiers can operate at different time granularities e.g., fixed
frequency device analyzers (e.g., analog phone) can carry
out the classification when Airshark finishes processing a
sub-band, whereas for frequency hopping device analyzers
like (e.g., Bluetooth, game controllers) the classification
decision can only take place after enough samples have
been processed (§3.3), (iii) classification process is more
efficient when multiple devices are simultaneously active—
each classifier outputs either label 1 (indicating the presence
of the device), or label 0 (indicating the absence of the
device). The alternative approach of using a single classifier is
cumbersome as it requires training the classifier for all possible
device combinations (each with a separate label).

Training. Before Airshark can identify a new RF device,
its features have to be recorded for training. To do this,

features relevant to this device are identified, and then
extracted from spectral samples for the cases when the
device is active in isolation (label 1), and when the device
is inactive (label 0). For example, when adding the analog
phone analyzer, we collected the spectral samples when the
phone was activated in isolation and when the phone was
inactive. We then instantiated analog phone’s device analyzer
to extract these features: bandwidth, spectral signature and
duty cycle (measured from the recorded spectral samples)
and the list of possible CFs the phone can operate on. It is
worth pointing out that identifying the relevant feature set for
a device and training the corresponding device analyzer is a
one time overhead before adding a new RF device to Airshark.
Table 1 lists the feature set employed by device analyzers in
our current implementation.

Classification. We now summarize Airshark’s detection
pipeline. Each sample is processed by the first stage of the
pipeline, and results in updating the completed pulse list
and aggregate statistics. Device analyzers are invoked when
Airshark finishes processing a sub-band:

1. Each device analyzer operates on the completed pulses and
aggregate statistics, to derive its features. The features
may include: CF, BW, angular difference (corresponding
to its spectral signature), duty cycle, number and the
spread of the pulses satisfying its pulse signature and timing
signature.

2. The device analyzer’s decision tree is invoked to output
either label 1 or 0.

3. In case the decision tree outputs label 1, Airshark invokes a
module that tags the selected pulses (satisfying the pulse
signature and timing signature) as “owned" by this RF
device.

An additional check is performed for frequency hopping
device analyzers: if there are not enough accumulated samples
to perform the classification, the classification decision is
deferred to the next sub-band.

Dealing with multiple RF devices and overlapping signals.
When multiple RF devices are simultaneously active, the
spectrum may be occupied by a large number of transmissions
(signal pulses). If the transmissions from multiple devices
do not overlap in time or in frequency (either because of
the diversity in the device transmission times, or because
the devices operate in a non-overlapping spectrum bands),
Airshark’s device analyzers can proceed as is. Further, for
certain combinations of devices, transmissions may overlap in
both time and frequency, but not always. For example, this is
the case when frequency hopping devices and fixed-frequency,
low duty devices are present. In our benchmarks for these
combinations, Airshark could always find enough pulses that
do not overlap, and therefore was able to correctly detect the
devices.

Transmissions from multiple devices that always overlap
in time and frequency, however, can decrease the detection
accuracy if the above techniques are used as is. For example,
if the transmissions from a fixed-frequency, always-on device
(e.g., analog phone) overlap in frequency with another fixed-
frequency device (e.g., ZigBee device), features like spectral
signatures will not perform well. This is because overlapping
signals change the “shape” of the power distribution and
increase the angular difference as shown in Figure 14(a). One
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Figure 14: Overlapping signal detection. (a) partial overlap
between ZigBee and analog signals (b) using partial matches
between spectral signatures reduces the angular difference in
overlapping cases.

approach to resolve such overlaps, is to use cyclostationary
analysis [17] on raw signal samples. Such rich signal
information (very high resolution, raw signal samples),
however, is not available through WiFi cards. We extend
the basic approach used in Airshark to handle these cases as
follows: device analyzers first identify the potential peaks that
match their CFs. For each peak, instead of a complete match
on the signal’s bandwidth BW, a partial match of the spectral
signatures is performed. The bandwidth BW,, for the partial
match is decided by the bandwidth detection algorithm, and is
required to be above a minimum bandwidth BW,,,;,, in order to
control the false positives (i.e., BW,,i, < BW,,, < BW). In our
benchmarks, setting BW.,,;, to 0.6 xBW improved the accuracy
without increasing the false positives (§4). Figure 14(b) shows
the reduction in angular difference when using a partial match.

Alternative classifiers. We also built another classifier based
on support vector machines (SVM) [5]. In our experiments, we
found that in most cases, Airshark’s SVM-based and decision
tree based classifiers had similar detection accuracies. In some
scenarios involving multiple devices, SVM-based classifier
performed slightly better (§4.1.5). However, we elected to
use a decision tree based classifier, as it has very low memory
and processing requirements, thus making it feasible to embed
non-WiFi device detection functionality in commodity wireless
APs and clients.

4. EXPERIMENTAL RESULTS

In this section, we evaluate Airshark’s performance under
a variety of scenarios, and present real-world applications
of Airshark through a small scale deployment. We start by
presenting the details of our implementation and testbed set
up, followed by the metrics used for evaluation.

Implementation. Our implementation of Airshark consists of
few hundred lines of C code that sets up the FFT sampling
from the Atheros AR9280 AGN based wireless card, and about
4500 lines of Python scripts that implement the detection
pipeline. We used an off-the-shelf implementation of the C4.5
decision tree algorithm [6] for training and classification.
For the alternative SVM-based classifier, we used an SVM
implementation [5] employing a radial basis function kernel
with default parameter setting. We focus on detecting devices
in 2.4 GHz spectrum, and our current prototype has been
tested with 8 classes of devices (across multiple device models)
mentioned in Table 1.

Evaluation set up. We performed all our experiments in a
university building (except those in §4.1.4). Our training
data was taken during the late evenings and night times to
minimize the impact of external non-WiFi interference. Our
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Figure 15: Accuracy of single device detection across signal
strengths for different RF devices.

100 i g s e
g 80 2 devices e
s . 3 devices
5 60 HF i
3 ! S 4 JOVices e
Q 40 — e
< E
N 20
0 T T T T T T T !
-100 -90 -80 -70 -60 -50 -40 -30

) . RSSI (dBm)
Figure 16: Accuracy of detection across signal strengths for 2, 3,

and > 4 device combinations.

evaluation experiments, however, were performed over a
period of one week that included both busy hours and night
times. We also used the AirMaestro signal analyzer [3] in
order to determine the “ground truth” about the presence of
any external non-WiFi RF devices during our experiments.

Evaluation Metrics. We use the following metrics to evaluate
the performance of Airshark:

1. Detection accuracy: This is the fraction of correctly identified
RF device instances. This estimates the probability that
Airshark accurately detects the presence of an RF device.

2. False positive rate (FPR): This is defined as the fraction
of false positives. This estimates the probability that
Airshark incorrectly determines the presence of an RF device.

We will first evaluate Airshark’s performance in various
scenarios, and then comment on the parameters we chose.
We set the energy threshold +, to —95 dBm, 65 to 10 dB, and
for computing NKLD we use 15000 samples. The RF devices
tested and the features used are listed in Table 1.

4.1 Performance evaluation

We start by evaluating Airshark using controlled experi-
ments with different RF devices.

4.1.1 Single device detection accuracy

Method. We measured the accuracy of device detection when
only one of the RF devices mentioned in Table 1 was activated.
The methodology used to activate the devices is also listed in
Table 1. We placed the devices at random locations to generate
the samples at different RSSI values, and then computed the
average detection accuracy at each RSSI.

Results. Figure 15 shows the detection accuracy as a
function of RSSI for different RF devices. We observe that
Airshark achieves an accuracy of 98% for RSSI values as low
as —80 dBm. For RSSI values < —80 dBm, the accuracy
drops down due to the reduced number of pulses detected
at such low signal strengths. Further, the drop is sharper for
frequency hopping devices, compared to fixed frequency, high
duty devices like analog phones and video cameras.

4.1.2 Multiple device detection accuracy

Method. For each run, we chose 2 <n <8 random devices
from our device set, placed them at random locations and
activated them simultaneously to generate samples at different
RSSI values. We then computed the average detection
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Figure 17: False positive rate for different devices.
Location/environment Accuracy False +ves
Indoor offices (floor-to-ceiling walls) 98.47% 0.029%
Lab environment (cubicle-style offices) 94.3% 0.067%
Apartments (dormitory-style) 96.21% 0.043%

Table 4: Airshark’s performance in different environments.

accuracy at each RSSI. We repeat the experiments for different
combinations of devices and locations. We note that our
experiments include the “overlapping signal” cases (§3.4).

Results. Figure 16 shows the detection accuracy for 2, 3, and
> 4 device combinations. We observe that even when > 4
devices are activated simultaneously, the average detection
accuracy is more than 91% for RSSI values as low as —80 dBm.
For higher RSSI values (> —60 dBm), the detection accuracy
was 96%. For lower RSSI values, in the presence of multiple
RF devices, we observed that features like spectral signatures,
duty cycles do not perform well, and hence result in reduced
accuracy (84.2.1). Overall, we find that Airshark is reasonably
accurate, and as we show in §4.1.6, its performance is close to
that of signal analyzers [3] using custom hardware.

4.1.3  False positives

Method. When performing the above experiments for single
and multiple device detection, we also recorded the false
positives. Figure 17 shows the distribution of false positive
rate across different RF devices.

Results. We observe that Airshark has a particularly low false
positive rate — even when using > 4 RF devices, operating
under a wide range of signal strengths, the average FPR was
0.39% (maximum observed FPR was 1.3%). Further, for RSSI
values > —80 dBm, the average FPR was < 0.068%.

Overall performance summary. For a total of 8 classes of
RF devices used in our evaluation, across multiple runs and in
presence of simultaneous activity from multiple RF devices at
different signal strengths, Airshark exhibits detection accuracy
of > 91% even for very low signal strengths of —80 dBm.
The average false positive rate was 0.39%. At higher signal
strengths (> —60 dBm) the accuracy was > 96%.

In a typical enterprise deployment with multiple APs running
Airshark, performance at low RSSI might not be a concern
as we can expect at least one AP to capture the non-WiFi
device signals with RSSI >—80 dBm. Below, we benchmark
the performance under the cases with RSSI > —80 dBm. We
revisit the performance at lower RSSI in §4.2.1.

4.1.4 Location insensitivity

Method. To understand whether the peformance of our
decision tree models was affected by the location and the
nature of the wireless environment, we repeated the controlled

Airshark-DTree
(%)Accuracy/FPR

97.73% / 0.012%
91.63% / 0.076%
96.47% / 0.037%
93.16% / 0.06%
96.23% / 0.036%
92.70% / 0.072%
Audio tx/headphones 92.27% / 0.016%  91.23% / 0.014%
Game controller (Xbox/Wii) 90.32% / 0.064% 91.75% / 0.046%
Table 5: Comparison of SVM and decision tree based approaches.
Table shows per-device accuracy in the presence of multiple RF
devices. The RSSI of the devices were > —80 dBm.

Airshark-SVM
(%) Accuracy/FPR

98.31% / 0.037%
92.03% / 0.094%
98.44% / 0.052%
94.02% / 0.012%
97.49% / 0.048%

94.24% / 0.08%

RF device

Analog cordless phone
Bluetooth (ACL/SCO)
FHSS cordless phone
Microwave oven
ZigBee device

Video camera

Detection device Online tests Accuracy False +ves
AirMaestro [3] 1827 1803 (98.7%) NA
Airshark 1827 1761 (96.3%) 12 (0.07%)

Table 6: Comparison of Airshark and a detection device that uses
a specialized hardware (AirMaestro RF signal analyzer).
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Figure 18: (a) RSSI vs. angular difference with respect to analog
phone’s spectral signature when the device is switched on and
off (b) CDF of bandwidth estimation error at different signal
strengths.
experiments in three different environments. In each case,
we activated the RF devices at different signal strengths and
measured Airshark’s performance.

Results. Table 4 shows that Airshark performs reasonably
well under all the three environments with an average
detection accuracy of 94.3%—98.4% and an average FPR of
0.029%—0.067%. This shows that our decision tree models
are general, and are applicable in different environments.

4.1.5 Performance of SVM-based classifier

Method. We compared the performance of SVM-based
implementation of Airshark with the decision tree based
version. Both SVM and decision tree implementations
were trained using the same data. Similar to the previous
experiments, we placed the RF devices at random locations to
evaluate the performance at different signal strengths.

Results. Table 5 shows that the performance of SVM and
decision tree for different RF devices. We observe that while
SVM based implementation performs slightly better in terms
of the detection accuracy (an improvement of up to 4%),
the number false positives also increase. We elected to use
the decision tree approach as it was much faster and has
comparable performance.

4.1.6  Comparison with specialized signal analyzers
Method. We compared the accuracy of Airshark with the
AirMaestro RF signal analyzer [3] by employing following
methodology: we performed experiments by activating a
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Figure 19: Stress testing Airshark with extreme WiFi interference.
Detection accuracy is reduced for pulsed transmission devices
(e.g., ZigBee), whereas accuracy for frequency hoppers is
minimally affected.

Choice of s —105 dBm —95 dBm —85 dBm

Accuracy (FPR)  97.3% (4.7%) 92.13% (0.041%) 89.24% (0.023%)

Table 7: Effect of different thresholds on Airshark’s performance.

combination of RF devices at different signal strengths and
collected traces from both Airshark and the AirMaestro device
simultaneously. Table 6 shows the results.

Results. We observe that out of 1827 device instances,
AirMaestro was correctly able to detect 1803 (98.7%), whereas
Airshark detected 1761 (96.3%) instances. Further, out of
66 instances where Airshark failed to identify the device, 48
instances had RSSI values of less than —80 dBm and the rest
involved frequency hopping devices with multiple other RF
devices operating simultaneously. We observed a total of
12 (0.07%) false positives and these instances occured when
operating multiple RF devices at low signal strengths.

4.2 Microbenchmarks

Airshark’s detection accuracy is affected by low signal
strengths and increased WiFi interference. Below we investi-
gate these scenarios.

4.2.1 Performance under low signal strengths

We now highlight some of the reasons for reduced accuracy
at low signal strengths by examining two of the features.

— Spectral signatures. Consider a particular center frequency
and associated bandwidth where we can expect an analog
phone to operate. We wish to compute the spectral signature
on this band (based on the received power in the FFT bins)
and then measure the angular difference w.r.t. analog phone’s
spectral signature for (i) when the analog phone is active at
this center frequency, (ii) when the phone is inactive. For
Airshark to clearly distinguish between these two cases, there
must be a clear separation between the angular differences i.e.,
angular difference must be low when the phone is active,
and higher when it is inactive. To understand the worst
case performance, we also activate multiple other RF devices
by placing them at random locations. Figure 18(a) shows
that even in the presence of multiple devices, the angular
difference is very low when the phone is operating at higher
RSSI. However, when the phone is operating at lower signal
strengths, the angular difference increases, thereby reducing
Airshark’s detection accuracy.

—Bandwidth estimation. In each run we activate a random
RF device at a random location and let Airshark compute the
bandwidth of the signal. Figure 18(b) shows the error in
computed bandwidth at different RSSI values. We observe
that Airshark performs very well at high RSSI values, but the
bandwidth estimation error increases at low signal strengths,
thereby affecting the detection accuracy.

4.2.2  Performance under extreme interference
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Figure 20: NKLD values wrt. to audio transmitter’s pulse
distribution for (a) audio transmitter at different distances (b)
different RF devices

Deployment Proportion of RF device instances

Microwave Bluetooth FHSS Phone Videocam Xbox
WLAN1 37.16% 52.34% 9.87% - 0.6%
WLAN2 81.65% 17.43% - 0.917% -
Table 8: Proportion of non-WiFi RF device instances in 2

production WLANS.
duration of 48 hours.

We performed stress tests on Airshark by introducing
additional WiFi interference traffic. We placed a WiFi
transmitter close to the Airshark node (distance of 1m) and let
it broadcast packets on the same channel as the fixed frequency
RF devices. We changed the WiFi traffic load resulting
in different airtime utilizations. We tested the detection
accuracy of RF devices at HIGH and LOW signal strengths
(—50 dBm and —80 dBm respectively). Figure 19 shows the
effect on Airshark’s detection accuracy w.r.t. normalized air
time utilization (air time utilization is maximum, when the
transmitter broadcasts packets at full throughput). Accuracy
of high duty devices (analog phone) is affected only in the
LOW case, when normalized airtime utilization is close to 1.
For devices like ZigBee (fixed frequency, pulsed transmissions),
the effect is more severe in the LOwW case under increased
airtime utilization. Frequency hopping devices like Bluetooth,
however, are not affected because Airshark is able to collect
enough pulses from other sub-bands. It is worth pointing
out that all the previous experiments were performed in
the presence of regular WiFi traffic and in different wireless
environments. We therefore believe that Airshark performs
reasonably well under realistic WiFi workloads.

We collected data using Airshark for a

4.2.3  Parameter tuning

We now discuss the empirically established parameters of
our system. Table 7 shows the effect of using different energy
thresholds. The set up for the experiments was similar to that
in 84.1.2. We observe that while it is possible to improve
Airshark’s accuracy at lower RSSI values by lowering the
threshold, this comes at the cost of increased false positives.
Increasing the threshold reduces the number of peaks (and
hence pulses) detected and reduces the detection accuracy.

We now show the effect of number of samples on the NKLD
values. Figure 20 (left) shows how the NKLD values converge
for an audio transmitter device (placed at different distances)
with the total number of samples processed by Airshark. We
find that around 15000 samples, the NKLD values converge
to 0.3. Figure 20 (right) compares the NKLD of different
RF devices when using the pulse distribution of the audio
transmitter device as reference. We find that 15000 samples
are sufficient, as NKLD values of < 0.3 can be used to indicate
the pulse distribution of the audio transmitter.

4.3 Example uses of Airshark

We now demonstrate Airshark’s potential through example
applications. We monitored the RF activity on a single floor of
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Figure 21: Results from a two day deployment of Airshark in two
production WLANSs. Each point in the scatter plot denotes the loss
rate for a link in the absence (p(L|—Z2)) and the loss rate in the
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a total of 224 links (168 links in WLAN1 and 56 links in WLAN2).
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Airshark Trace Loss rate Airshark Trace Loss rate
Duration Microwave  Link L1 Duration Microwave  Link L2
14:35:19—-14:55:18  OFF 10.52% 16:50:36—16:53:19  OFF 16.66%
14:55:18—14:55:46 ON 86.20% 16:53:19-16:53:52 ON 79.61%
14:55:46—15:00:22  OFF 10.91% 16:53:52—17:13:22  OFF 15.78%
15:00:22—15:02:40 ON 45.88% 17:13:22—17:15:19 ON 48.78%
15:02:40—15:04:45 OFF 7.63% 17:15:19-17:33:20  OFF 15.00%

Table 9: Airshark traces for the time periods relevant to links
L1 and L2 (WLAN1) showing increased losses due to microwave
oven activity.

two production WLANSs using regular wireless laptops that ran
Airshark and also captured packets using tcpdump. WLAN1
used 7 APs and WLAN2 employed 3 APs on the monitored
floor. We collected the data for 48 hours at each location. To
provide confidence in our statistical estimates, we restrict our
analysis to a total of 224 links (168 links in WLAN1, 56 links
in WLANZ2) that exchange at least 150 packets in our packet
traces. Airshark can help WLAN administrators answer the
following questions about RF device activity in their networks:

Question. “Which non-WiFi RF devices were visible in the
WLANs? How long were the devices active, and which devices
appeared more frequently?”

Analysis. Using traces from Airshark, we found that non-
WiFi devices were active for 22.6% (10.48 hrs) and 13.92%
(6.68 hrs) of the trace duration in WLAN1 and WLAN2
respectively. Table 8 shows the proportion of non-WiFi
RF device instances in the two WLANs—microwave ovens
(37.16% and 81.65%) and Bluetooth devices (52.34% and
17.43%) occurred most frequently in WLAN1 and WLAN2.
FHSS cordless phones accounted for 9.87% of the instances
in WLAN1. Game controllers and video cameras were also
visible, albeit for very short durations.

Question. “Did any of the links in the WLAN suffer from
interference due to non-WiFi devices? Which non-WiFi devices
caused the most interference?”

Analysis. Airshark can help identify the interference-prone
links as follows: Let L denote the event of a packet loss on a
wireless link. We note that L might include losses due to non-
WiFi interference as well as those due to “background losses”
(e.g., due to weak signal)®. Let Z be the event that a non-WiFi

3We note that intermittent losses may also occur due to
potential hidden terminals in the network. We used PIE [26],

device z is active. We compute the probability of a packet
loss given the device is active, p(L|Z), and the probability of a
packet loss given the device is inactive, p(L|—-Z) as follows:

1. Using Airshark, we identify the periods when the device z
was active (ton), and when the device z was inactive (tof).

2. For each link, we compute the total number of packets
transmitted on the link during t.,, and the corresponding
number of packets lost, to measure p(L|Z). Similarly, we
compute p(L|—-Z) by measuring the loss rate during tos.

3. For the links severely interfered by device z, we can expect
p(LIZ) > p(L|-Z).

We make the following observations:
— Microwave Ovens: Figure 21 shows the impact of microwave
oven activity using a scatter plot of p(L|Z) and p(L|—Z). We
observe increased losses for a few links (70—80%). We found
that around 20% links in WLAN1 and 10% links in WLAN2 had
more than 20% increase in loss rates. Further, for around 5% of
the links, the loss rates increased by more than 40%. Table 9
shows snapshots of Airshark traces and loss rates for two
links L1 and L2 that experienced interference from microwave
ovens.
— Video camera: The camera was active only for around 3
minutes in the WLAN2 trace, but it had a severe impact on
two of the links as shown in Figure 21. Losses for the two
links increased from 6.47% to 77.67%, and 12.47% to 44.85%
during the period the camera was on.
— Bluetooth/Xbox/FHSS phones: In both the traces, we did not
find any impact of these devices on the link loss rates.

5. RELATED WORK

There is a large body of literature on signal classification that
includes work on cyclostationary signal analysis [28], blind sig-
nal detection [23], and other spectrum sensing techniques [8].
In our work, we only focus on signal detection methods that
can be implemented on top of the functionality exposed by
commercial WiFi cards. Present day solutions that detect
RF devices include entry-level products like AirMedic [2],
Wi-Spy [7] that use extra hardware to display spectrum
occupancy, but cannot detect RF devices automatically. More
expensive solutions like Cisco Spectrum Expert/CleanAir [4],
AirMagnet Spectrum XT [2], and Bandspeed AirMaestro [3]
use specialized hardware (signal analyzer ICs) to perform
high resolution spectral sampling and detect RF devices.
Airshark offers a similar performance, is more cost effective as
it operates using commodity WiFi cards, and requires only a
software upgrade to be readily integrated in existing WLAN
deployments.

Recent research work [17,21] also leverages specialized
hardware to detect non-WiFi devices. Hong et. al [17]
use a modified channel sounder to sample a wideband (100
MHz), and present novel cyclostationary signal analysis to
accurately detect non-WiFi devices. RFDump uses GNURadio
and employs timing/phase analysis along with protocol
specific demodulators to detect devices. Airshark builds such
functionality under the constraints of using commodity WiFi
hardware.

Using controlled measurements, prior work [9,13,15,22,25]
has studied the impact of non-WiFi devices on WiFi links. Many
of them have focused on targeted interference scenarios, e.g.,

a system that can detect hidden conflicts, to discard such cases
from the traces.



between Bluetooth-WiFi [13] or ZigBee-WiFi [22, 25], and
proposed mechanisms for co-existence [10,18]. Similar to [9,
15], we consider the general problem of non-WiFi interference,
but specifically, we focus on the problem of making existing
WiFi links better aware of non-WiFi RF devices, thereby paving
the way for corrective actions that can be implemented in
today’s networks. Further, our mechanism is complementary
to the above solutions, and can be used in conjunction to more
effectively tackle non-WiFi interference.

6. CONCLUSION

In this work, we first motivated the need to detect non-
WiFi RF devices by characterizing their prevalence in typical
environments. We then presented Airshark, a system that
can detect the non-WiFi devices using only the functionality
provided by commodity WiFi cards. Airshark extracts unique
features using energy samples from a WiFi card and presents
a generic, and extensible framework to accurately detect
multiple non-WiFi devices, while maintaining a low false
positive rate. We also found its performance to be comparable
to a commercial signal analyzer. Through a deployment in two
production WLANs, we demonstrated Airshark’s potential in
understanding non-WiFi interference issues.

We envision embedding Airshark in commodity wireless
APs that opens up numerous other possibilities. WLAN
administrators can monitor RF device activity across the
network without deploying additional hardware. APs can
also employ real-time, non-WiFi interference mitigation
mechanisms based on the input from Airshark (e.g., device
RSSI/channel). Another application is to physically locate
the RF interferer. Localization can be done by correlating
the device transmissions across samples from multiple Air-
shark nodes and then using triangulation methods.
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