A Measurement Study of a Commercial-grade Urban WiFi Mesh

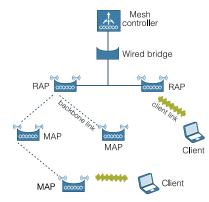
Vladimir Brik Shravan Rayanchu Sharad Saha Sayandeep Sen Vivek Shrivastava Suman Banerjee

Wisconsin Wireless and NetworkinG Systems (WiNGS) Lab University of Wisconsin Madison

IMC 2008

What?

 Measurement study of the performance and usage characteristics of an operational commercial urban wireless mesh network


Why?

- Better understanding of these networks
- Previous measurement studies: Roofnet, TFA, DGP (all are custom testbeds built for experimentation)
- What is the state-of-the-art in the industry?
- How much of prior work is applicable?

MadMesh

- More than 250 MAPs covering 10 sq. miles
- Has been operational for about 2 years now
- Provides service to more than 1000 residential customers, small businesses, public safety organizations

Architecture

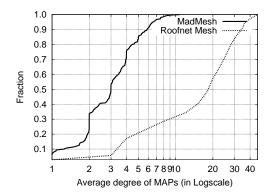
- Cisco 1510 MAPs, RAPs, Mesh controller
- Tree-based routing (vendor proprietary protocols)
- Backbone interface (802.11a, 5GHz)
- Access interface (802.11 b/g, 2.4 GHz)

Categories of study:

- Mesh planning and deployment
- Mesh routing
- User experience
- Usage characterization

Data collection:

- Period infrastructure logs: SNMP (every 3 min), tools at the controller
- Passive measurements: Deployed indoor/outdoor nodes
- Active measurements: coverage, throughput experiments
- Two week period 1.7 million SNMP records; 100 hrs of active measurements

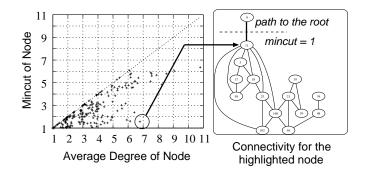

Deployment Characteristics:

- What kind of connectivity does each MAP have? Is the network robust against failures?
- What are the link-level error rates and signal qualities on the backbone and access links?
- Does the network topology lend itself to new techniques like wireless network coding?

Q. What is the average MAP degree?

- Lower degree \Rightarrow less re-routing choices during losses
- Higher degree \Rightarrow over-provisioning, self-interference

Mesh Planning & Deployment Average MAP Degree

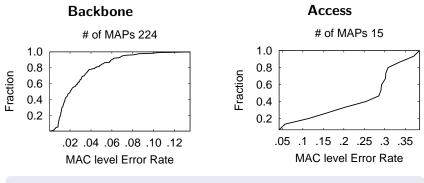

- MAPs: 20% have degree ≤ 2 and 50% have degree > 3
- Much higher degree for Roofnet

< 合

Q. Is the deployment robust?

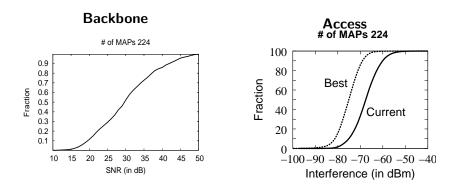
• **Min-cut**: the minimum number of edges, whose removal would disconnect the MAP from the graph

Mesh Planning & Deployment Robustness



• 8% of the MAPs have min-cut ≤ 2

• Some MAPs with degree as high as 7 have min-cut ≤ 2


Q. How good are the access and backbone links?

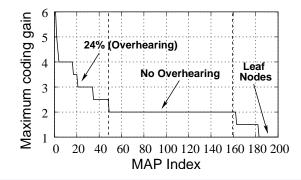
- ₹ 🖬 🕨

- Much higher loss rates on access links
- Why is this the case?

Mesh Planning & Deployment Channel Selection

- Good quality backbone links
- PER on access: (1) low SNR (2) interference
- $\geq -70 \mathrm{dB}$ interference on 80% of the access links
- Channel selection can help

Q. Are techniques like network coding applicable?


Q. Are techniques like network coding applicable?

- COPE: XOR operations, opportunistic listening
- Coding rule:

To transmit n packets, $p_1, ..., p_n$, to n nexthops, $r_1, ..., r_n$, a node can XOR the n packets together only if each next-hop r_i has all n - 1 packets p_j for $j \neq i$.

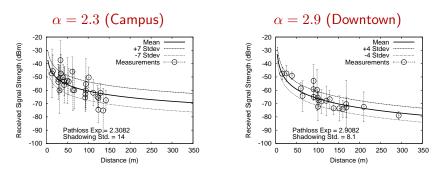
- We calculate the maximum coding gain at each MAP
- Depends on a number of factors; Measure of overhearing supported by the deployment

Mesh Planning & Deployment Applicability of Network Coding

- For 66% of the MAPs, coding gain was 2
- 24% of MAPs had coding gain > 2 (Max. coding gain was 6)
- Network coding can indeed improve the performance

Characterizing the user experience:

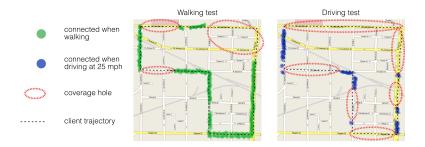
- How good is the client connectivity? Are coverage holes prevalent?
- What are the observed client throughputs?


Q. How prevalent are coverage holes?

• Estimate using a path-loss model:

$$P_{dBm}(d) = P_{dBm}(d_0) - 10\alpha log_{10}(\frac{d}{d_0}) + \epsilon$$

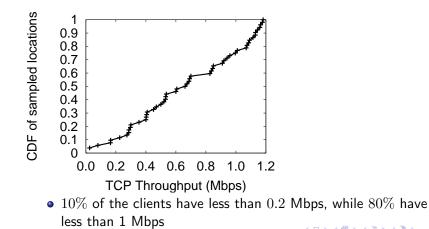
• Collected signal strength information at 25 locations for each MAP, and then estimated $\alpha,\,\epsilon$


• Path-loss modeling results:

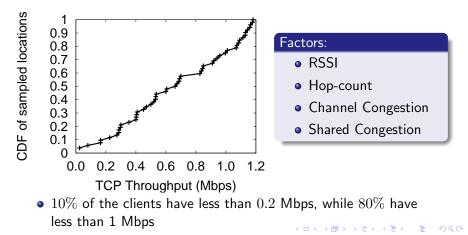
• Path-loss varies with each MAP (location)

A D > A A P > A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

User Experience Client connectivity


- Propagation model based radio map shows this area to be 'covered'
- Simple monitoring tool at the clients
- More holes prevalent at vehicular speeds
- Client feedback can really help

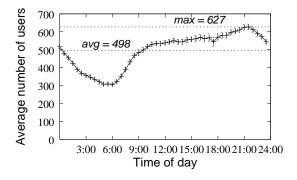
Q. What are the throughputs achieved at different locations?


Q. What are the throughputs achieved at different locations?

- Random sample of 100 locations
- 3 runs of TCP iperf tests, 100 seconds each

Results of throughput tests:

Results of throughput tests:

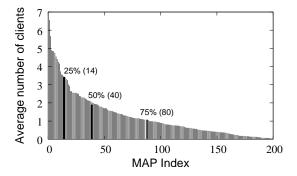

Characterizing mesh usage:

- How many clients are using the network? How does the usage vary with time?
- How does client distribution vary with MAPs, across different hops etc. ?

Q. How does the usage vary with time?

< E.

Q. How does the usage vary with time?



• Most number of clients were connected at around 10 PM

Q. How does the usage vary across MAPs?

< ∃ >

Q. How does the usage vary across MAPs?

- Clearly, certain MAPs are more popular than others
- 50% of clients are connected to 40 MAPs (20%)

Main observations:

- Robustness ensure path diversity
- Bottleneck it is the access link; channel selection can help
- Management client feedback can really help
- Techniques like network coding are applicable
- User characteristics night time peaks and uneven usage

Questions?

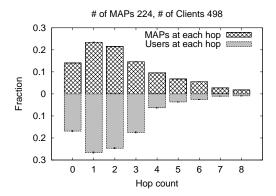
WiNGS Lab, UW-Madison Measurement Study of MadMesh

æ

<ロト <部ト < 注ト < 注ト

Other slides

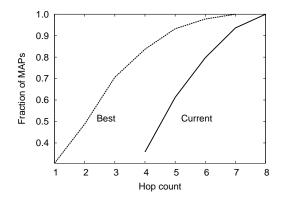
WiNGS Lab, UW-Madison Measurement Study of MadMesh


æ

17 ▶

(★ 문 ► ★ 문 ►

Routing Strategy


- EASE metric (SNR, hop-count)
- How well does it perform?

- $\bullet~{\rm For}~15\%$ of the MAPs are RAPs
- 60% of MAPs have hop-count ≤ 2
- 8% of MAPs have hop-count \geq 5

< ∃→

< 同 ▶

- $\bullet\,$ Chose only neighbors with SNR $\geq 14 {\rm dB}$
- Shorter paths were indeed available