#!/usr/bin/env python from gnuradio import gr, gru, eng_notation, optfir, window from gnuradio import audio from gnuradio import usrp from gnuradio import blks from gnuradio.eng_option import eng_option from optparse import OptionParser import usrp_dbid import sys import math import struct class tune(gr.feval_dd): """ This class allows C++ code to callback into python. """ def __init__(self, fg): gr.feval_dd.__init__(self) self.fg = fg def eval(self, ignore): """ This method is called from gr.bin_statistics_f when it wants to change the center frequency. This method tunes the front end to the new center frequency, and returns the new frequency as its result. """ try: # We use this try block so that if something goes wrong from here # down, at least we'll have a prayer of knowing what went wrong. # Without this, you get a very mysterious: # # terminate called after throwing an instance of 'Swig::DirectorMethodException' # Aborted # # message on stderr. Not exactly helpful ;) new_freq = self.fg.set_next_freq() return new_freq except Exception, e: print "tune: Exception: ", e class parse_msg(object): def __init__(self, msg): self.center_freq = msg.arg1() self.vlen = int(msg.arg2()) assert(msg.length() == self.vlen * gr.sizeof_float) # FIXME consider using Numarray or NumPy vector t = msg.to_string() self.raw_data = t self.data = struct.unpack('%df' % (self.vlen,), t) class my_graph(gr.flow_graph): def __init__(self): gr.flow_graph.__init__(self) usage = "usage: %prog [options] min_freq max_freq" parser = OptionParser(option_class=eng_option, usage=usage) parser.add_option("-R", "--rx-subdev-spec", type="subdev", default=(0,0), help="select USRP Rx side A or B (default=A)") parser.add_option("-g", "--gain", type="eng_float", default=None, help="set gain in dB (default is midpoint)") parser.add_option("", "--tune-delay", type="eng_float", default=1e-3, metavar="SECS", help="time to delay (in seconds) after changing frequency [default=%default]") parser.add_option("", "--dwell-delay", type="eng_float", default=10e-3, metavar="SECS", help="time to dwell (in seconds) at a given frequncy [default=%default]") parser.add_option("-F", "--fft-size", type="int", default=256, help="specify number of FFT bins [default=%default]") parser.add_option("-d", "--decim", type="intx", default=16, help="set decimation to DECIM [default=%default]") parser.add_option("", "--real-time", action="store_true", default=False, help="Attempt to enable real-time scheduling") parser.add_option("-B", "--fusb-block-size", type="int", default=0, help="specify fast usb block size [default=%default]") parser.add_option("-N", "--fusb-nblocks", type="int", default=0, help="specify number of fast usb blocks [default=%default]") (options, args) = parser.parse_args() if len(args) != 2: parser.print_help() sys.exit(1) self.min_freq = eng_notation.str_to_num(args[0]) self.max_freq = eng_notation.str_to_num(args[1]) if self.min_freq > self.max_freq: self.min_freq, self.max_freq = self.max_freq, self.min_freq # swap them self.fft_size = options.fft_size if not options.real_time: realtime = False else: # Attempt to enable realtime scheduling r = gr.enable_realtime_scheduling() if r == gr.RT_OK: realtime = True else: realtime = False print "Note: failed to enable realtime scheduling" # If the user hasn't set the fusb_* parameters on the command line, # pick some values that will reduce latency. if 1: if options.fusb_block_size == 0 and options.fusb_nblocks == 0: if realtime: # be more aggressive options.fusb_block_size = gr.prefs().get_long('fusb', 'rt_block_size', 1024) options.fusb_nblocks = gr.prefs().get_long('fusb', 'rt_nblocks', 16) else: options.fusb_block_size = gr.prefs().get_long('fusb', 'block_size', 4096) options.fusb_nblocks = gr.prefs().get_long('fusb', 'nblocks', 16) #print "fusb_block_size =", options.fusb_block_size #print "fusb_nblocks =", options.fusb_nblocks # build graph self.u = usrp.source_c(fusb_block_size=options.fusb_block_size, fusb_nblocks=options.fusb_nblocks) adc_rate = self.u.adc_rate() # 64 MS/s usrp_decim = options.decim self.u.set_decim_rate(usrp_decim) usrp_rate = adc_rate / usrp_decim ######### #print adc_rate, usrp_decim, usrp_rate self.usrp_decim = options.decim ######### self.u.set_mux(usrp.determine_rx_mux_value(self.u, options.rx_subdev_spec)) self.subdev = usrp.selected_subdev(self.u, options.rx_subdev_spec) #print "Using RX d'board %s" % (self.subdev.side_and_name(),) s2v = gr.stream_to_vector(gr.sizeof_gr_complex, self.fft_size) mywindow = window.blackmanharris(self.fft_size) fft = gr.fft_vcc(self.fft_size, True, mywindow) power = 0 for tap in mywindow: power += tap*tap c2mag = gr.complex_to_mag_squared(self.fft_size) # FIXME the log10 primitive is dog slow log = gr.nlog10_ff(10, self.fft_size, -20*math.log10(self.fft_size)-10*math.log10(power/self.fft_size)) # Set the freq_step to 75% of the actual data throughput. # This allows us to discard the bins on both ends of the spectrum. #self.freq_step = 0.75 * usrp_rate # Using a freq step of 0.5Mhz self.freq_step = 0.5e6 self.min_center_freq = self.min_freq + self.freq_step/2 self.max_center_freq = self.max_freq - self.freq_step/2 self.next_freq = self.min_center_freq tune_delay = max(0, int(round(options.tune_delay * usrp_rate / self.fft_size))) # in fft_frames dwell_delay = max(1, int(round(options.dwell_delay * usrp_rate / self.fft_size))) # in fft_frames self.msgq = gr.msg_queue(16) self._tune_callback = tune(self) # hang on to this to keep it from being GC'd stats = gr.bin_statistics_f(self.fft_size, self.msgq, self._tune_callback, tune_delay, dwell_delay) # FIXME leave out the log10 until we speed it up self.connect(self.u, s2v, fft, c2mag, log, stats) # self.connect(self.u, s2v, fft, c2mag, stats) if options.gain is None: # if no gain was specified, use the mid-point in dB g = self.subdev.gain_range() options.gain = float(g[0]+g[1])/2 self.set_gain(options.gain) #print "gain =", options.gain def set_next_freq(self): target_freq = self.next_freq self.next_freq = self.next_freq + self.freq_step if self.next_freq > self.max_center_freq: self.next_freq = self.min_center_freq if not self.set_freq(target_freq): print "Failed to set frequency to", target_freq return target_freq def set_freq(self, target_freq): """ Set the center frequency we're interested in. @param target_freq: frequency in Hz @rypte: bool Tuning is a two step process. First we ask the front-end to tune as close to the desired frequency as it can. Then we use the result of that operation and our target_frequency to determine the value for the digital down converter. """ return self.u.tune(0, self.subdev, target_freq) def set_gain(self, gain): self.subdev.set_gain(gain) def main_loop(fg): #loop_var=0 curr_freq = fg.min_center_freq while curr_freq < fg.max_center_freq: # Get the next message sent from the C++ code (blocking call). # It contains the center frequency and the mag squared of the fft m = parse_msg(fg.msgq.delete_head()) # Print center freq so we know that something is happening... #print m.center_freq #print "Center Freq (Ghz) = ", m.center_freq/1e9, "Step (Mhz) = ", fg.freq_step/1e6 f_s = fg.u.adc_rate()/fg.usrp_decim #print "F_S, F_S/255 (MHz)= ", f_s/1e6, f_s/255/1e6 for myvar in range(224, 255): print (m.center_freq + (myvar-255)*f_s/(255))/1e9 , m.data[myvar] for myvar in range(0, 31): print (m.center_freq + myvar*f_s/(255))/1e9 , m.data[myvar] curr_freq = m.center_freq #loop_var = loop_var+1 print " " #break # FIXME do something useful with the data... # m.data are the mag_squared of the fft output (they are in the # standard order. I.e., bin 0 == DC.) # You'll probably want to do the equivalent of "fftshift" on them # m.raw_data is a string that contains the binary floats. # You could write this as binary to a file. if __name__ == '__main__': fg = my_graph() try: fg.start() # start executing flow graph in another thread... main_loop(fg) except KeyboardInterrupt: pass