
MODELS AND SYSTEMS FOR UNDERSTANDING
WIRELESS INTERFERENCE

by

Shravan Rayanchu

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2012

Date of final oral examination: 06/07/2012

The dissertation is approved by the following members of the Final Oral
Committee:

Suman Banerjee, Associate Professor, Computer Sciences
Aditya Akella, Associate Professor, Computer Sciences
Paul Barford, Professor, Computer Sciences
Ranveer Chandra, Senior Researcher, Microsoft Research
Stark Draper, Assistant Professor, Electrical and Computer Engineering

© Copyright by Shravan Rayanchu 2012
All Rights Reserved

i

To my parents, Bhavani and Vaikuntam Rayanchu,
and my sister, Manisha Rayanchu.

ii

���������������

During my graduate school, I have had the good fortune of meeting and learning
from many wonderful people, and I am grateful to all of them. First and
foremost, I want to thank my advisor, Suman Banerjee. I am appreciative of his
generosity with time, advice, ideas, and am grateful to him for his guidance
during my graduate studies. Suman gave me an incredible amount of freedom
to work on problems of my choice and to figure things out at my own pace.
And besides being a great advisor, he has made himself available for all my
problems, both professional and personal, throughout my graduate school.
Thank you, Suman.

I consider myself lucky to have been mentored by some exceptional minds.
I would like to thank Ranveer Chandra for his guidance and support. His
valuable advice has helped shape some crucial aspects of my work. I would
also like to thank my mentors Ram Ramjee and Sudipta Sengupta who have
always been available for helpful advice and guidance. Likewise, I would also
like to thank Aditya Akella, Paul Barford and Stark Draper for their insightful
suggestions and comments that greatly improved this thesis. Thanks also to
Alec Wolman, Stefan Saroiu and Victor Bahl for a very enjoyable summer I
spent at Microsoft Research.

I have enjoyed working with, and have had the support of, some excellent
colleagues and friends at the WiNGS lab. I would like to thank Arunesh Mishra
for mentoring me in the early stages of my research and for introducing me to
the joys of experimental research. I have greatly benefitted by his infectious
enthusiasm for work and his constant emphasis for working on practical
problems. I am also indebted to my colleague and close friend Vivek Shrivastava
for always being available, be it for bouncing o� ideas, help with the testbed
set up, debugging weird issues, or simply, for being there to let some steam
o� with a cold beer when nothing seemed to work. Likewise, I would like to
thank Sayandeep Sen for the camaraderie and support, especially during the
later years of my graduate school. I will fondly remember the innumerable
discussions I have had with him over co�ee at the Union South. I also want to

iii

express my thanks to other students in the lab — Dheeraj Agrawal, Sharad Saha,
Ashutosh Shukla, Ashish Patro, Jongwon Yoon, Joshua Hare, Vladimir Brik,
Tan Zhang, Mike Griepentrog, Lance Hartung and Yadi Ma — for fostering a
conducive environment for research and for being great colleagues.

Apart from the students in the lab, I have the company of several good
friends in the department with whom I have spent some fun times. Adwait
Tumbde, Siddharth Barman, Pradeep Tamma, Shreepadma Venugopalan,
Jayaram Bobba, Cindy Rubio, Ashok Anand and Theo Benson have provided
great company. Outside of the department, Namita Azad, Megha Desai, Prachi
Singh, and Aparna Vidyasagar have helped create some wonderful memories
from my time in Madison.

I would not be here without some exceptional people to cheer me and
support me every step of the way. I want to thank Abhijeet Kumar, Prabhanshu
Shekhar, Anand Sinha and Vinay Choudhary for being great companions, and
most importantly, for always being available to listen to my rants! Special thanks
to my close friend, Abhinav Sarje. Besides being exceptionally patient with me,
he has been a source of unwavering support for the past ten years. I will forever
cherish his friendship. Going back in time, I am grateful to my teachers in school
and at IIT Guwahati who have played a crucial role in my education. I also
want to thank my friends for the past fourteen years, Sandeep Deshpande and
Vinay Bandaru. Their love and generosity is only paralleled by their exceptional
sense of humor.

My heartfelt thanks to Akanksha Baid, without whom this journey wouldn’t
have been the same. I thank her for six memorable years of friendship, and for
always being there to brighten my day. She means the world to me.

My family always makes me feel like I am the luckiest person on earth. Tata,
Ammamma, Nanamma, Arupinni, Jayakka, Vasumama, my cousins and the
rest of my extended family have showered me with much love and a�ection, and
I am thankful for having spent my childhood amidst such wonderful people.

I owe a special debt of gratitude to my parents, Bhavani and Vaikuntam
Rayanchu, and my little sister, Manisha. They have loved me and cared for me
unconditionally all my life. And simply put, they are the reason I have been
able to get this far. I know words aren’t enough, but I sincerely thank them for

iv

all the sacrifices they have made and everything they have done for me. I love
them and I dedicate this dissertation to them.

v

��������

Contents v

List of Tables vii

List of Figures ix

1 Introduction 1
1.1 Focus of this thesis 4
1.2 Modeling wireless packet losses due to collisions 16
1.3 Detecting non-WiFi devices using WiFi hardware 18
1.4 Quantifying non-WiFi interference using WiFi hardware 20
1.5 Modeling interference between links using flexible channels 21
1.6 Contributions 24
1.7 Outline 27

2 Identifying Losses due to Wireless Collisions 28
2.1 Motivation 28
2.2 An Overview of COLLIE 31
2.3 Feedback-based Collision Inference 33
2.4 Using COLLIE for Link Adaptation 45
2.5 Experimental Results 48
2.6 Summary of COLLIE 51

3 Detecting Non-WiFi RF Devices using WiFi Hardware 52
3.1 Motivation 52
3.2 Characterizing Prevalence of Non-WiFi RF Devices 58
3.3 Airshark: Device Detection 64
3.4 Experimental Results 80
3.5 Issues and Discussion 93
3.6 Summary of Airshark 95

4 Deconstructing Non-WiFi Interference using WiFi Hardware 97

vi

4.1 Motivation 97
4.2 WiFiNet 101
4.3 Experimental Results 120
4.4 Issues and Discussion 139
4.5 Summary of WiFiNet 140

5 Modeling Interference due to Flexible Channels 142
5.1 Motivation 142
5.2 Properties of Flexible Channels 146
5.3 FLUID: Overview 153
5.4 Modeling Conflicts in FLUID 154
5.5 Transmission Packing 165
5.6 Implementation Aspects 168
5.7 Evaluation 170
5.8 Summary of FLUID 179

6 Related Work 180
6.1 Handling wireless packet collisions 180
6.2 Modeling WiFi interference and flexible channelization 183
6.3 Non-WiFi Device Detection 187
6.4 Non-WiFi Interference Detection and Device Localization 189

7 Conclusions and Future Work 191
7.1 Contributions 191
7.2 Key takeaways and lessons learnt 194
7.3 Future work 201

A Impact of this dissertation 204

References 206

vii

���� �� ������

2.1 Collision Detection Accuracy and False Positive Rates 41
2.2 Correlation Between the Metrics 41
2.3 COLLIE -based link adaptation tasks in di�erent modules 46

3.1 Devices tested with the current implementation of Airshark. Fea-
tures used to detect the devices include: Pulse signature (duration,
bandwidth, center frequency), Spectral signature, Timing signature,
Duty cycle, Pulse spread and device specific features (e.g., Sweep
detection for Microwave Ovens). Accurac y tests were done in
presence of multiple active RF devices and RSSI values range from
-80 dBm (low) to -30 dBm (high). 57

3.2 Time between valid consecutive spectral samples and time taken to
switch sub-bands in our current implementation. 67

3.3 Pulse signatures for di�erent RF devices. 73
3.4 Airshark’s performance in di�erent environments. 85
3.5 Comparison of SVM and decision tree based approaches. Table

shows per-device accuracy in the presence of multiple RF devices.
The RSSI of the devices were > -80 dBm. 86

3.6 Comparison of Airshark and a detection device that uses a special-
ized hardware (AirMaestro RF signal analyzer). 86

3.7 E�ect of di�erent thresholds on Airshark’s performance. 90
3.8 Proportion of non-WiFi RF device instances in 2 production WLANs.

We collected data using Airshark for a duration of 48 hours. . . . 90
3.9 Airshark traces for the time periods relevant to links L1 and L2

(WLAN1) showing increased losses due to microwave oven activity. 92

4.1 Distribution of convergence time for WiFi links replaying HTTP/TCP
wireless traces (heavy, medium and light profiles) in presence of an
FHSS cordless phone interferer. 129

4.2 Overall localization error for an analog cordless phone and an FHSS
phone when placed at random locations in deployment 2. 130

viii

4.3 Overall localization error for the Model-TP algorithm with (i)
uniform and (ii) per-AP path loss exponents (deployment 1). . . . 130

4.4 Performance of clustering mechansisms used in WiFiNet. Results
for two clustering algorithms (������ and k-means+EM) using (i)
start time o�set and (ii) RSS attributes are shown. Up to non-WiFi
devices of the same type were placed at random locations. 137

5.1 Choosing the right width is non-trivial as throughput may not be
proportional to channel width under interference. Plot shows UDP
throughputs for 10 and 40 MHz widths (throughputs normalized
w.r.t. 20 MHz) across 2872 link/interferer combinations for di�erent
fixed PHY rates and for dynamic rate adaptation (SampleRate).
Shaded portion indicates the percentage of links for which the
throughput is doubled (halved) when the width is doubled (halved). 148

5.2 Number of hidden and exposed links depend on the channel widths.
The precise methodology to identify hidden and exposed links was
taken from [148]. 149

5.3 Parameters used in FLUID’s modeling procedure. 156
5.4 Summary of the results. Gain is reported for throughput unless

otherwise noted. 171
5.5 Median gains (from using client-centric widths) over best DCF

configuration and CENTAUR. 172
5.6 Median gains under interference across di�erent PHY rates for

FLUID-thr and FLUID-fair over the best DCF configuration and
CENTAUR for 194 topologies. 174

5.7 Normalized throughput gains of FLUID over the best DCF and
CENTAUR across di�erent PHY rates. 179

ix

���� �� �������

1.1 For the purposes of this thesis, we broadly classify wireless packet
losses into two categories: (a) losses due to weak signal and (b) losses
due to wireless interference. Wireless interference experienced by a
link can be because of (a) WiFi to WiFi interference or (b) non-WiFi
to WiFi interference. 2

1.2 An example enterprise WLAN with a central controller, 5 WiFi Ac-
cess Points (APs) and 6 clients — WiFi-enabled laptops, smartphones
and tablets. Each client is associated to one AP, therefore there are 6
WiFi links in the network. These links are labelled L1, L2, . . ., L6. . 5

1.3 The overall performance of the WLAN shown in Figure 1.2. We use
link delivery ratio to measure the performance of individual links.
The figure also shows the reason behind under performance of each
link (e.g., interference from a non-WiFi device, or interference from a
WiFi device, or a weak signal problem). Our objective in this thesis is
to develop systems and models that help us identify such interferers
and quantify their impact. 6

1.4 Our approach to the solution in this thesis. COLLIE, Airshark and
WiFiNet are systems based on post-mortem analysis of wireless
losses, whereas the FLUID system is based on a modeling approach
that is predictive in nature. As shown in the figure, each of
these systems can handle di�erent sub-problems in broad space
of interference detection and quantification. 14

2.1 The cause of a packet loss determines which wireless link parameters
have to be changed. We only consider interference from WiFi sources
in the sub-problem considered in this chapter. 29

2.2 Design of our COLLIE system which consists of three modules —
the client which implements a majority of the logic, the AP which
performs minimal packet relaying and an optional backend server
(for some specific multi-AP extensions). 32

x

2.3 Experiment setup designed to study various metrics for inferring
collisions. 34

2.4 CDF of Received Signal Strength (RSS) 35
2.5 CDF of Bit-Error Rate (BER) . 35
2.6 CDF of Error Rate Per Symbol (EPS) 36
2.7 CDF of S-Score . 38
2.8 Scatter-plot of SER Vs EPS . 39
2.9 Scatter-plot of BER vs RSS. 39
2.10 Illustration of multi-AP approach for collision inference used in

COLLIE. 44
2.11 Improvements in collision detection accuracy using the Multi-AP

approach. 45
2.12 Throughput gains for static scenario 46
2.13 Throughput variation over time . 47
2.14 Setup for inducing collisions . 47
2.15 Throughput gains of COLLIE in presence of collision sources . . . 48
2.16 Observed throughput for mobile scenario 49
2.17 Wasted (re)-transmission as a function of channel variability induced

through node mobility. 49

3.1 Degradation in UDP throughput of a good quality WiFi link (WiFi
transmitter and receiver were placed 1m apart) in the presence of
non-WiFi devices operating at di�erent signal strengths. 53

3.2 Average RSSI from di�erent non-WiFi RF device instances shown
against the device start times. Measurements were taken at a dorm-
style apartment (location L16, dataset §3.2) for a 24 hour period. . 53

3.3 Distribution of (i) non-WiFi device instances/hour at di�erent
locations (top), and (ii) RSSI of non-WiFi devices at these locations
(bottom). Min, Max, 25th, 50th and 75th percentiles are shown. . 60

3.4 Distribution of non-WiFi device instances at various locations. . . 61
3.5 Distribution of (a) Session durations of the non-WiFi device instances

(X-axis in log-scale) and (b) RSSIs of the non-WiFi device instances
aggregated across all locations. 61

xi

3.6 The plot shows (a) CDF of quiet times at locations where 48 hours
of trace data was collected (enterprise and home locations). Time-
series of non-WiFi device instances per minute at (b) an enterprise
(location L14) and (c) and home (location L18) for a 24 hour period
shows increased quiet times during late nights. 62

3.7 Distribution of (a) quiet and busy periods (b) simultaneously-active
devices during the busy periods across di�erent locations 63

3.8 (a) Illustration of Airshark’s detection pipeline. Spectral samples
from the WiFi card are generated using a scanning procedure (§3.3).
These samples are processed to detect signal pulses, and collect some
aggregate statistics based on the received power values (§3.3). In
the next stage, various features capturing the spectral and temporal
properties of the signals are extracted (§3.3), and are used by di�erent
device analyzers that employ decision tree models (§3.3) trained to
detect their target RF devices. 65

3.9 Illustration of the pulse detection and matching procedure. Pulse
detector processes the spectral sample at time t2 to output two new
pulses p3 and p4. New pulse p3 matches with the active pulse p1,
and results in extending p1. Active pulse p2 is terminated as there
is no matching new pulse, and new pulse p4 is added to the active
pulse list. 69

3.10 (a) Distribution of average power vs. frequency for an analog
cordless phone at di�erent distances. (b) Spectral signatures for
the analog cordless phone are not a�ected for RSSI values of > -80
dBm. 70

3.11 Inter-pulse timing signature for di�erent devices. 74
3.12 Pulse distribution of FHSS cordless phone and an audio transmitter

as captured by Airshark. 75
3.13 Spectral samples from Airshark capturing the activity of a residential

microwave. The plot shows (i) the ON-OFF cycle for is around 16.6
ms and (ii) “frequency sweeps” during the ON periods. 77

xii

3.14 Overlapping signal detection. (a) partial overlap between ZigBee and
analog signals (b) using partial matches between spectral signatures
reduces the angular di�erence in overlapping cases. 81

3.15 Accuracy of single device detection across signal strengths for
di�erent RF devices. 82

3.16 Accuracy of detection across signal strengths for 2, 3, and > 4 device
combinations. 83

3.17 False positive rate for di�erent devices. 84
3.18 (a) RSSI vs. angular di�erence with respect to analog phone’s

spectral signature when the device is switched on and o� (b) CDF
of bandwidth estimation error at di�erent signal strengths. 87

3.19 Stress testing Airshark with extreme WiFi interference. Detection
accuracy is reduced for pulsed transmission devices (e.g., ZigBee),
whereas accuracy for frequency hoppers is minimally a�ected. . . 88

3.20 NKLD values wrt. to audio transmitter’s pulse distribution for (a)
audio transmitter at di�erent distances (b) di�erent RF devices . . 89

3.21 Results from a two day deployment of Airshark in two production
WLANs. Each point in the scatter plot denotes the loss rate for a link
in the absence (p(L|¬Z)) and the loss rate in the presence (p(L|Z)) of
(i) microwave ovens, (ii) video cameras, for a total of 224 links (168
links in WLAN1 and 56 links in WLAN2). 91

4.1 Illustration of WiFiNet’s architecture. 98

xiii

4.2 Flow of operations in WiFiNet. WiFiNet APs capture spectral
samples as well as WiFi frames. Each AP runs Airshark [131] to
detect non-WiFi devices and output non-WiFi pulses (transmissions)
tagged with device type. WiFi frames are used to synchronize the
clocks at the APs. Synchronized clocks at the APs are then used to
consolidate the pulses across multiple APs using a heuristic (§4.2).
Consolidated pulses are then clustered using (i) RSS based clustering
and (ii) device-specific clustering methods to output unique non-
WiFi device instances and their pulses (§4.2). For each non-WiFi
device instance and WiFi link, the interference detection module
then analyzes the impact of the device on the link using transmission
overlaps (§4.2). Model-based localization algorithms are used to
localize each non-WiFi device instance (§4.2). 102

4.3 (left) Illustration of graph based opportunistic synchronization used
in WiFiNet. Each node is an WiFiNet AP (s0 is the reference AP),
weights on the edges correspond to the pair-wise AP skews, and the
numbers in the parentheses are the final synchronization o�sets of
the APs (i.e., skews w.r.t. reference s0) (right) CDF of synchronization
error for our deployment of 8 WiFiNet APs at di�erent sync intervals.
Error in synchronization is 6 6 µs for a sync interval of 500 ms. . 105

4.4 Heatmap of 4 FHSS cordless phone devices (2 base/handset pairs)
captured by a WiFiNet AP, showing the timing property. Each
base/handset pair emits two short pulses that are both at the same
center frequency and are separated by 5 ms. The pair then jumps
to a di�erent center frequency after 10 ms and repeats the process.
WiFiNet identifies the pulses belonging to each device by calculating
their timing o�sets (pulse start time modulo 10 ms). 106

xiv

4.5 Segregating pulses in the presence of multiple, simultaneously
operating devices of the same type, based on WiFiNet’s device specific
and generic clustering. Figure shows clusters of pulses from (left) 2
FHSS cordless phone base/handset pairs (4 FHSS cordless devices)
using pulse start time o�set (middle) 2 Microwave ovens using ON-
period o�set (right) 4 FHSS cordless devices using a generic, RSS
based k-means + EM-clustering technique using 3 WiFiNet APs. . 107

4.6 Illustration of interference estimation in WiFiNet. 111
4.7 Illustration of carrier sensing estimation in WiFiNet. 114
4.8 (left) Path loss model created by a WiFiNet APs using WiFi trans-

missions (right) PDF of actual RSSIs observed at a sample location
and the model created using a normal distribution. 117

4.9 (top, left) Deployment 1 comprising 8 APs. (rest of the sub-figures)
FHSS cordless phone device is placed at the starred location. Grid
probabilities for predicted phone locations after processing 1, 6 and
all AP pairs when using Model-UTP algorithm. 118

4.10 (left) Interference estimates obtained using controlled measurements
(ground truth) and WiFiNet on 165 link-interferer scenarios compris-
ing 4 di�erent classes of devices. (right) CDF of error in interferer
estimates is within ±0.1 for 95% of the cases. 123

4.11 Accurately identifying impact of each interferer in the presence
of multiple non-WiFi devices. (left) example scenario showing
WiFiNet is able to identify the strong interferers (analog cordless
phone, FHSS phone) and weak interferers (ZigBee and Bluetooth
devices) accurately. (right) CDF of error in inteference estimates in
the presence of multiple interferers. 124

4.12 WiFiNet’s accuracy in the presence of multiple non-WiFi devices of
the same type. Out of 4 FHSS cordless phone devices, 2 are placed
close to the link, and 2 are placed farther away. 125

4.13 (left) Switching on and o� 2 high duty devices (analog phones) at the
exact same time causes WiFiNet to incorrectly identify the interferers.
(right) Allowing diversity resolves the issue. 125

xv

4.14 Estimating the interference impact of a WiFi interferer (hidden
terminal) and a non-WiFi interferer (ZigBee device). 126

4.15 WiFiNet’s ability to track the changing interference patterns for
a client that is moving away from a ZigBee interferer. (left)
instantaneous throughput at the client (right) delivery in isolation
(i.e., in absence of overlap), impact given overlap (p[I|O]) and actual
impact (p[I]) are shown. 127

4.16 (i) Impact of PHY rate and (ii) packet size on p[I|O] in presence of
a ZigBee interferer. For (i), packet size is fixed at 1400 bytes, and
for (ii), rate is fixed at 12 Mbps. p[I|O] rises sharply with rate, the
change in p[I|O] with packet size is less pronounced. 128

4.17 WiFi links replay real HTTP/TCP wireless traces (heavy, medium,
and light profiles) in presence of strong, medium and weak inter-
ferers. WiFiNet’s estimates closely match the ground truth in each
case. The slight mismatch is due to the variability in packet sizes as
the ground truth was measured using 1400 byte packets, whereas
the traces comprised packets of di�erent sizes. 129

4.18 Accuracy of localization for (left) FHSS cordless phone and (right)
analog cordless phone for deployment 1 (Figure. 4.9). 130

4.19 Localization accuracy for FHSS cordless phone (left) for subsets of 4
APs from deployment 1 (right) using Model-UTP when the number
of APs was decreased from 8 to 3. 131

4.20 Emulating an enterprise WLAN with 4 APs and 6 clients. A total
of 9 non-WiFi devices are placed to interfere with the clients: 2
analog phones, 4 FHSS cordless phone devices, a Bluetooth device,
a ZigBee device and a microwave oven. WiFiNet is able to accurately
characterize the interference impact (p[I|O]) of all devices (even those
of the same type) on each of the clients. 133

4.21 (left) Number of frame overlaps are required to converge for 10
ZigBee interferer scenarios including strong, medium and weak
interference (middle) CDF of the number packet overlaps required
for p[I|O] to converge (right) Convergence time as a function of the
tra�c load for an FHSS cordless phone. 135

xvi

4.22 WiFiNet’s estimates of deferral probability close match the ground
truth. Here, a WiFi transmitter is moving toward a ZigBee interferer
leading to increase in the deferral probability. 136

4.23 (left) Ability of WiFiNet to correctly identify interferers when
transmissions from two non-WiFi devices overlap. p[I|O] measured
by WiFiNet for both strong (p[I|O] = 0.88) and weak (p[I|O] = 0.22)
interferers as a function of their overlap in transmission times. If
the overlap is less than 45%, WiFiNet can distinguish the strong and
weak interferers accurately. (right) Ability of WiFiNet to correctly
estimate p[I|O] of an interferer as function of percentage of pulses
lost (i.e., not captured) by an WiFiNet AP. 138

4.24 Performance of clustering for 2 FHSS cordless phone devices as a
function of the distance between them. Clustering using (i) timing
properties is una�ected by the distance, whereas that using (ii) RSS
performs incorrect clustering when the devices are placed6 5 meters
apart (L1, L2). For L0, devices were 10 m apart. 139

5.1 Example flexible channel configurations using two channel widths
of 20 and 40 MHz. The total available spectrum is 40 MHz. . . . 143

5.2 (left) Carrier sensing probability at di�erent widths for 600 link pairs
(right) Frequency separation needed for conflicting 40 MHz links to
become non-conflicting at di�erent PHY rates. 148

5.3 Conflict information and corresponding throughputs with di�erent
spectrum assignments for real topologies in our testbed. A rounded
rectangle enclosing two nodes represents a conflict (i.e., carrier
sensing when the nodes are both transmitting, and interference
when one is transmitting and the other node is receiving). 151

xvii

5.4 Flow of operations in FLUID. Periodic signal strength measurements
are used to update the modeled conflict graph (§5.4). Packets arrive
from the network gateway and are enqueued at a central controller.
The controller releases these packets based on the transmission
schedules derived by a packing algorithm (§5.5). APs receive the
packets and transmit them according to the controller’s prescribed
flexible channel assignment, and subsequently notify the controller
of all failures. The controller uses this feedback for scheduling
retransmissions and refining the conflict graph. 155

5.5 Sketch of the modeling process. Signal strengths of the transmitter
and the interferer at their respective widths are interpolated using
their corresponding signal strengths at 5 MHz. The amount of
interference is then computed based on the spectral overlap, which
is used to calculate the SINR. Finally, the SINR is input to the delivery
prediction model to compute the delivery under interference. . . 157

5.6 (left) Delivery ratio as a function of mean signal strength for di�erent
widths, across all the receivers at 6 Mbps. We show measured
delivery ratio values and piece-wise linear interpolation as a function
of SNR (model M1). (right) CDF of modeling error for all the four
models. 158

5.7 Prediction error for all the models at di�erent PHY rates. 158
5.8 Example spectrum overlap scenarios. (left) Two links (t1, r1) and

(t2, r2) using a channel width of 20 MHz and center frequencies f1

and f2 separated by 20 MHz. (right) Two links (t1, r1) and (t2, r2)

using the same center frequency (fc), but di�erent channel widths
of 40 MHz and 20 MHz respectively. 162

5.9 (left) CDF of signal strengths in the testbed for di�erent channel
widths. (right) CDF of error in estimating the minimum channel
separation (�fmin) across di�erent PHY rates and channel width
combinations, using naive and It,r models. 163

xviii

5.10 Throughput gains with rate adaptation for CENTAUR, FLUID-thr
and FLUID-fair over DCF with fixed channel widths from (left)
link quality aware width assignment (241 single AP - two client
topologies) (right) increased transmission concurrency (194 two-link
topologies with varying degrees of conflict). 173

5.11 (left) Minimum center frequency separation required for conflict
resolution at di�erent widths (right) CDF of gain from intelligent
packing across 331 link pairs. 175

5.12 The plot shows the CDF of throughputs at 12 and 54 Mbps (40 MHz
bandwidth) for two categories: (left) conflicting links or hidden
terminals (right) non-conflicting links and exposed terminals. We
experimented with 346 two-link topologies for di�erent configura-
tions: DCF-fixed (ii) DCF-flex (iii) CENTAUR and (iv) FLUID. . . 177

5.13 Throughput achieved with rate adaptation for a 23 node (8 AP,15
Client) topology. Plot shows the UDP throughput (top) and the TCP
throughput (bottom). 10th and 90th percentile values shown by
error bars. Sum of values, Jain’s Fairness are shown in parenthesis. 178

MODELS AND SYSTEMS FOR UNDERSTANDING
WIRELESS INTERFERENCE

Shravan Rayanchu

Under the supervision of Associate Professor Suman Banerjee
At the University of Wisconsin-Madison

With the prolific growth in the usage and the number of wireless devices, the
problem of designing high performance and reliable wireless networks is of
great importance today. A crucial step forward in designing such networks
is to improve our understanding of wireless interference — a phenomenon that
remains the primary source of performance bottlenecks and unpredictability in
today’s wireless networks. To this end, this dissertation makes contributions in
developing systems and models that help us better understand interference in
wireless networks.

We start by studying wireless losses. Wireless losses can be due to weak
signal at the receiver, or interference from other wireless devices such as
WiFi devices or non-WiFi RF devices. To isolate the losses emanating from
interference due to WiFi devices, we design COLLIE, a system that helps
distinguish between losses due to weak signal and those due to WiFi interference.
We then focus our attention to the problem of non-WiFi interference. Since
WiFi cards do not have the ability to decode a non-WiFi device’s transmission,
we designed Airshark a software system that runs on top of a mainstream
wireless card and helps detect di�erent non-WiFi devices. We then designed
WiFiNet, a system that helps detect the exact source of interference, quantify
the impact of such interference, and also help physically pin point the non-WiFi
interferer’s location. All these systems are based on post-mortem analysis of
wireless losses. In the last part of this thesis, we also explore an alternative
method of modeling wireless interference in the context of links using flexible
channels. These models are predictive in nature and help us understand the
impact of wireless interference before the event of a packet loss.

We believe that the models and systems presented in this thesis are useful
in understanding wireless interference in today’s networks as our solutions

xix

can be natively implemented in present-day WiFi hardware. We hope that
our contributions would serve as useful building blocks in designing more
sophisticated tools to better understand wireless interference and pave way
for building future wireless networks that are more reliable, predictable and
manageable.

Suman Banerjee

1

� ������������

Wireless networks have experienced a phenomenal growth over the last
decade [111, 154], and WiFi has become the predominant technology for
communication in indoor wireless environments. More recently, we have
also witnessed a tremendous growth in the number and usage of mobile
devices [161], largely attributable to concomitant maturation of mobile eco-
systems such as iOS [15] and Android [14] systems. These mobile systems are
abundant with rich, media-centric applications that require low latency and
high bandwidth [48] [153]. Naturally, the growing usage of such demanding
mobile applications has led the users to expect wire-like performance from WiFi
networks i.e., users expect WiFi networks to be fast, and they expect the networks
to be reliable. However, unlike their wired brethren, wireless networks do not
yet o�er a predictable performance, and o�er significantly lower throughputs
than their wired counterparts. Although, newer standards like 802.11n are
capable of o�ering raw data rates of around 300 Mbps, the actual throughputs
in practice remain considerably lower [147].

A primary reason for WiFi performance degradation is the lossy nature of
WiFi links (WiFi transmitter and receiver pairs). For the purposes of this thesis,
we classify packet losses on WiFi links into two broad categories:

• Weak signal: A “weak signal" scenario leads to packet losses when the
received signal strength of the transmitted packet is not strong enough
for it to be decoded successfully at the receiver. Channel impairments
such as signal attenuation, shadowing and short-term channel fading due
to multipath propagation [129] are typically responsible for such weak
signal scenarios.

• Interference: A WiFi transmission can su�er from interference at the
receiver when there is a simultaneous transmission from another trans-
mitter (interferer). Depending on the magnitude of signal strength of the
interferer at the receiver, such interference can result in packet losses.

2

For the “weak signal” scenario, whether the received signal strength (or
more accurately, the signal strength to noise ratio, SNR) of the transmitter is
enough for the packet to be decoded successfully primarily depends on the
receive sensitivity [133] of the wireless card, which is a function of the PHY
data rate at which the packet was modulated at. Such packet losses attributable
to weak signal can happen frequently, either because the client is too far away
from the AP, or because of aggressive data-rate adaptation algorithms [28]
that attempt to operate a wireless link at the highest rate possible in order to
maximize throughput and overall system capacity.

Wireless losses

Weak signal Interference

WiFi interference Non-WiFi interference

Figure 1.1: For the purposes of this thesis, we broadly classify wireless packet
losses into two categories: (a) losses due to weak signal and (b) losses due
to wireless interference. Wireless interference experienced by a link can be
because of (a) WiFi to WiFi interference or (b) non-WiFi to WiFi interference.

Wireless interference experienced by WiFi links on the other hand can be
caused due to a number of reasons. A wireless network using 802.11 a/b/g/n
operates in an unlicensed spectrum, which can be populated by a plethora of
WiFi transmitters such as other WiFi Access Points (APs) and clients, as well as
many other non-WiFi wireless devices such as Bluetooth devices, ZigBee devices,
cordless phones and microwave ovens. Simultaneous transmissions from these
devices can interfere at the WiFi receiver and result in packet losses, thereby
decreasing the observed link throughputs. In this thesis, we broadly categorize
such interference experienced by a WiFi link into: (i) WiFi to WiFi interference
i.e., interference experienced by a WiFi link due to other WiFi transmitters and

3

(ii) non-WiFi to WiFi interference i.e., interference experienced by a WiFi link due
to other non-WiFi wireless transmitters that use the same spectrum (e.g., a
2.4 GHz channel) as WiFi links. Figure 1.1 summarizes this broad category of
reasons for a wireless packet loss.

Impact of interference

A classic example of WiFi to WiFi interference is a scenario where simultaneous
transmissions from two WiFi devices can result in packet collisions at the WiFi
receiver(s) and degrade system throughput, a scenario commonly referred to
as the hidden terminal case [27]. Another example of throughout degradation
in presence of WiFi devices is the case of exposed terminals, where two WiFi
transmitters may carrier sense each other and defer the their transmissions
unnecessarily [27, 148]. Similarly, interference from non-WiFi devices such
as analog cordless phones or microwave ovens can cause packet losses at
the WiFi receiver or can cause the WiFi transmitters to endlessly defer their
transmissions [139] leading to a complete loss of connectivity.

Non-WiFi interference can be particularly damaging as most non-WiFi
devices are “agnostic” of other WiFi devices operating in the vicinity. For
example, in case of two WiFi transmitters that can potentially interfere with
each other, WiFi’s constituent standard, 802.11, has carrier sensing and back-o�
mechanisms [67] in place to avoid such WiFi to WiFi interference. However,
many non-WiFi devices do not follow such interference avoidance mechanisms
(e.g., analog cordless phones transmit energy continuously), and in some cases
(e.g., devices like microwave ovens) the transmitted energy is simply “signal
leakage” that cannot be avoided [81, 150]. Consequently, most non-WiFi devices
being agnostic of WiFi transmissions, do not back-o� to WiFi transmissions in
progress and severely interfere at the WiFi receiver. Furthermore, even 802.11’s
interference avoidance mechanisms only take other WiFi transmitters into
account. That is, WiFi devices cannot “decode” transmissions from other non-
WiFi devices and therefore cannot identify and react to non-WiFi interference.

4

�.� ����� �� ���� ������

It is a well known fact that packet losses in 802.11 can happen due to the above
stated reasons — weak signal, or WiFi to WiFi interference, or non-WiFi to WiFi
interference. However, discerning the exact cause of a packet loss, once it occurs,
is known to be quite di�cult. Attributing the correct cause for a packet loss is
important as this decision triggers the choice for operational parameters to be
used on each wireless link and provides a crucial input to interference mitigation
strategies employed, thus a�ecting the overall performance of the wireless
network. For example, if it determined that a weak signal scenario is responsible
for packet losses, then simply deploying more WiFi APs to ensure a better
coverage [112], or increasing the transmit power at the WiFi transmitter [126],
or in yet another case reducing the PHY data rate of the transmitter might
alleviate the problem [163]. Similarly, in the case of interference, a variety
of interference mitigation strategies such as channel assignment [107], RTS-
CTS mechanisms coupled with rate adaptation [163], packet scheduling [148],
conflict-aware transmit power control mechanisms [126] can be used.

Determining the correct strategy to mitigate wireless wireless losses,
however, is only possible after knowing the underlying cause. Hence, there
is a need for systems that determine the exact cause of a wireless loss and
attribute it to weak signal, or interference from WiFi devices, or interference
from non-WiFi devices. Such systems would help identify the underlying cause
for performance degradation of various links in the network and help improve
their performance. Next, we motivate the need for such systems with the help
of an example shown below.

A Motivating scenario

Consider an example of an enterprise wireless LAN (WLAN) shown in the
Figure 1.2. This WLAN consists of 5 WiFi APs, all of which are connected to a
central WLAN controller over an Ethernet backplane. Such an architecture is
typical of many enterprise WLANs that are deployed in practice [148, 149]. In
this WLAN, are a total of 6 clients — WiFi-enabled laptops, smartphones and

5

L1#

L2#
L3#

L4#

L5#
L6#

Controller

AP

Clients

Figure 1.2: An example enterprise WLAN with a central controller, 5 WiFi
Access Points (APs) and 6 clients — WiFi-enabled laptops, smartphones and
tablets. Each client is associated to one AP, therefore there are 6 WiFi links in
the network. These links are labelled L1, L2, . . ., L6.

tablets. Each client is associated to one AP, i.e., there are 6 AP-client links in the
network. These links are labelled L1, L2, . . ., L6.

Figure 1.3 shows the performance of each of the individual WiFi links in
this network1. In this example, only links L5 and L6 have a good delivery ratio
(close to 1). Rest of the links do not have very good delivery ratios. We note
that measuring link delivery ratios is not di�cult. For example, one can deploy
wireless sni�ers that monitor the packets transmitted by each link, infer the
whether each packet was successfully transmitted or not (based on the receipt
of acknowledgment packets or retries [123]) and measure the link delivery ratio.
Several existing solutions (commercial systems as well as research prototypes)
are able to use such mechanisms and measure the link delivery ratio. However,
these existing systems are not able to explain and comprehensively point out
the underlying reason behind a WiFi link’s performance (i.e., the delivery ratio).

1In this example, we use the link delivery ratio, a popular approach to measure a WiFi link’s
MAC layer performance. We note that wireless interference resulting in packet losses can also
a�ect a number of higher layer quality-of-service metrics such as delay or jitter.

6

Specifically, if the delivery ratio of a link is low, it is important to identify why
the performance of a particular WiFi link is low.

Link%delivery%ra-o%

Li
nk
s%

BAD% GOOD%

L1%
L2%
L3%

L4%

L5%
L6%

L6%

0 1

Weak signal

Figure 1.3: The overall performance of the WLAN shown in Figure 1.2. We use
link delivery ratio to measure the performance of individual links. The figure
also shows the reason behind under performance of each link (e.g., interference
from a non-WiFi device, or interference from a WiFi device, or a weak signal
problem). Our objective in this thesis is to develop systems and models that
help us identify such interferers and quantify their impact.

In this example WLAN, it turns out that links L1 . . . L4 do not have good
delivery ratios because of a variety of reasons as shown in Figure 1.3 — Link L1
has a poor delivery ratio as it is su�ering from interference due to a non-WiFi
interferer, a wireless video camera. Link L2 on the other hand is su�ering from
interference due to two non-WiFi devices, a microwave oven and a cordless
phone. Link L3 is su�ering from interference due to a link L6 (WiFi to WiFi
interference). Link L4 is not su�ering from any interference, however, the link is
su�ering from a “weak signal” problem i.e., L4’s receiver (a laptop) is far away
from the transmitter (AP) and is resulting in some of the packets getting lost.

We note that the loss mitigation strategy in each of the above cases is
dependent on the underlying reason for the loss. For example, to improve link

7

L1’s delivery ratio, the only solution might be to change the L1 to a di�erent
channel to avoid interference from the video camera that transmits energy
continuously on fixed channel. Whereas in the case of L2, an appropriate packet
scheduling algorithm [148] can be invoked to mitigate losses due to a microwave
oven that exhibits an ON-OFF transmission pattern [81, 150]. Since L3 is being
interfered by L6, a variety of WiFi interference mitigation mechanisms e.g.,
link scheduling [148] or channel assignment [107] can be used to make the
links non-conflicting. In the case of L4, which is su�ering from a weak signal
problem, increasing the transmit power on L4’s AP might improve the link
delivery ratio.

It is important to note that the correct interference mitigation strategy in
each case can be employed only after knowing the underlying cause for the
wireless loss. Hence there is a need for systems that help identify the underlying
reason for a wireless packet loss and estimate the extent of wireless interference
experienced by the network, thereby helping us better understand and manage
interference in today’s wireless LANs. To this end, in this thesis, we focus on
the problem of wireless interference detection and quantification.

Interference estimation under the constraints of today’s WiFi hardware: challenges
and opportunities

While it is desirable that we are able to estimate interference (from both WiFi
and non-WiFi devices) in present-day WLANs, a solution that enables such
estimation on top of today’s WiFi hardware has to tackle several challenges.
WiFi interference estimation has been an active research topic and several
solutions, some of which work under the constraints of WiFi hardware, have
been proposed (Chapter 6). Below, we explain the challenges in interference
estimation mostly in context of non-WiFi interferers. Subsequently, we outline
the basic idea behind the solutions developed in this dissertation for interference
estimation.

8

Why is it hard to estimate non-WiFi interference with current WiFi
hardware?

Estimating interference from non-WiFi devices using current WiFi cards is
challenging because of several reasons:

• Challenge #1. In order to estimate the impact of a non-WiFi interferer, an AP
or a client employing a WiFi card has to be able to detect the presence of this
non-WiFi interferer. Fundamentally, however, WiFi cards are not designed
to decode non-WiFi device transmissions. That is, current circuitry used
in WiFi cards hosts digital MAC and baseband engines that can detect
and decode only WiFi transmissions.
Implication #1. The above restriction implies that non-WiFi transmissions
cannot be decoded by WiFi cards as is. Further, the absence of such
decoder modules implies that several prior research e�orts that advocate
usage of protocol specific demodulators or decoders [98] are not applicable
when employing WiFi hardware.

• Challenge #2. Current WiFi cards do not expose raw signal information.
For example, raw signal information in the form of baseband I/Q samples
from the output of the analog-to-digital converter (ADC) in the RF front
end are not exposed by today’s WiFi hardware. Traditionally, only RSSI
(received signal strength) information about the packet, or more recently,
RSSI per sub-carrier information has been exposed by WiFi cards.
Implication #2. Lack of such signal information implies that several
approaches in the literature that are able to extract information about the
original interferer by entirely reconstructing the interferer’s signal [98], or
by using cyclostationary detection approaches [66] that work with the raw
I/Q samples are not applicable. Thus, one has to develop non-WiFi device
detection approaches that work solely on these power samples. That is, these
mechanisms should work despite the absence of phase and modulation
properties of the signal.

• Challenge #3. Current WiFi cards are designed to operate on a narrow
band of spectrum (e.g., 20 MHz or 40 MHz). This is because, in a typical

9

WiFi receiver based on an Atheros 802.11 chip [141], the center frequency
and channel bandwidth are determined by the frequency synthesizer and
the phase locked loop (PLL) in the RF front end circuitry. Both frequency
synthesizer and PLL are fed by a reference clock that is driven by a 20 (or
a 40 MHz) crystal oscillator [141]. Thus, the amount of spectrum that can
be sampled by today’s WiFi cards is limited to a maximum of 20 (or 40)
MHz.
Implication #3. Several prior approaches that make use of wide-band
radios [125] or sophisticated signal analyzers [1, 66] that can sample
a wide-band of 80-100 MHz (e.g., the entire 2.4 GHz band) are not
applicable. An important implication is that the solutions that detect
non-WiFi device transmissions must be able to cope with lost spectrum
information — power samples from parts of the spectrum not monitored
by a WiFi card. In particular, developed solutions must be able to detect
non-WiFi device transmissions that can potentially occupy a much wider
band. For example, frequency hoppers such as bluetooth or cordless
phone devices spread their transmissions across the entire 80 MHz band.
Non-WiFi detection solutions must be able to detect such frequency
hoppers despite not being able to capture all their transmissions.

• Challenge #4. By design, WiFi cards o�er reduced sampling resolutions
in both time and frequency domains. For example, WiFi cards have a
resolution bandwidth [1] of 312.5 kHz, equal to sub-carrier spacing in
802.11. Processing the signal in each of the 802.11 sub-carriers is a part
of the regular OFDM decoding circuitry implemented in today’s WiFi
cards. Information about power in each of these sub-carriers is exposed
by current wireless cards leading to resolution bandwidth of 312.5 kHz.
Current WiFi cards also have a low sampling rate in the time domain.
For example, current Atheros WiFi cards o�er ⇠2.5k samples/sec. While,
regular WiFi cards are capable of decoding each OFDM symbol (⇠4µs in
duration), many WiFi cards (e.g., Atheros wireless cards) employ circuitry
to expose only time-averaged information about the signal such RSSI
or RSSI-per sub-carrier at a coarse-grained time granularity (e.g., inter-

10

sample duration of ⇠120µs). Such an time averaging is typically employed
for carrier sensing and radar detection capabilities [68].
Implication #4. Several prior research e�orts [66, 98] that assume high
sampling resolutions (e.g., as low as 1 kHz frequency domain resolution)
o�ered by channel sounders, commercial signal analyzers [3] (160k
samples/sec) or software radios (8 million samples/sec) are not applicable.
Non-WiFi device detection capabilities developed on top of commodity
WiFi hardware must employ techniques that work with such low sampling
resolution.

• Challenge #5. Despite limited power information exposed by WiFi cards,
they should be able to uniquely identify a non-WiFi device, especially in
the presence of multiple devices of the same type.
Implication #5. Since the detection procedures must solely operate on
power samples, non-WiFi device detection can be more challenging in the
presence of multiple, simultaneously operating devices as their transmission
characteristics can potentially overlap. Further, in some cases where
similar devices are under operation, it becomes di�cult to distinguish
between these devices. For example, transmission power characteristics
of two cordless phones can be potentially identical (even the amount of
received power can be similar if the devices are at an equal distance from
the WiFi card and if they use the same transmit power). Thus, device
detection procedures must be able to uniquely identify di�erent non-WiFi
devices (even multiple devices of the same type) despite similar power
characteristics.

• Challenge #6. A system based on WiFi cards must be able to estimate a non-
WiFi device’s interference impact (in the presence of multiple interferers)
and also be able to physically locate the device despite not knowing the
transmit power of the device.
Implication #6. Using only information built from power samples, the
solution must first uniquely identify di�erent non-WiFi devices, segregate
their transmissions, and then identify the interference impact of each
such device. Further, in typical localization procedures (e.g., in WiFi

11

localization procedures such as [25, 29, 140, 166]), multiple detectors
have to to detect the same transmission at di�erent signal strengths. This
is easy in WiFi localization because di�erent WiFi detectors decode the
same wireless frame and use the frame’s identity to ensure sameness.
A core challenge that we have to solve is to use di�erent WiFi detectors
and determine which transmissions correspond to a single transmission
instance from the same non-WiFi device. Further, most of the prior
localization approaches assume that target device’s transmit power is
known [25, 29, 140, 166]. Our solution has to able to localize each non-
WiFi device without knowing its actual transmit power.

Is there an opportunity for interference estimation with current WiFi
hardware?

While current WiFi cards impose certain limitations as explained above,
in this dissertation, we will show that is possible to estimate interference
from both WiFi and non-WiFi devices using such commonly available WiFi
hardware. Here, we explain the basic idea behind the solutions developed
in this dissertation for interference estimation, particularly in the context of
interference from non-WiFi devices. Our solutions work well despite the
constraints imposed by commodity WiFi hardware and across a wide range
of non-WiFi devices, as they only rely on received power of transmissions —
a property that is generic, and is inherent to all wireless communication
technologies as we explain next.

As explained previously, WiFi cards only expose limited about of power
information about the signal. Typically, this information is averaged across the
entire channel and for every packet (e.g., RSSI per packet), or it is provided at a
slightly finer granularity (e.g., RSSI per sub-carrier time averaged across few
OFDM symbols) such as in emerging WiFi cards. While this power information
about the signal is quite limited, and poses several challenges in interference
estimation as outlined previously, this information exposed happens to be a
fundamental characteristic of every wireless technology.

Radio waves are fundamentally a form of energy (or power) emitted and
absorbed by charged particles, which exhibits wave-like behavior as it travels

12

through space. Radio technologies then transmit messages by systematically
changing (modulating) some property of these radiated waves, such as their
amplitude, frequency, or phase. Thus, fundamentally, every wireless technology
employs radio emissions that inherently consist of electro-magnetic energy (or
power). Therefore, a solution that is developed solely on top of such received power
is generic, and is potentially applicable to all wireless technologies.

While di�erent radio technologies follow di�erent protocols, employ
di�erent channel access methodologies and modulation mechanisms, they
fundamentally use (electro-magnetic) transmission power to exchange infor-
mation. To our advantage, the very fact that di�erent radio technologies
employ diverse mechanisms and protocols can be used to detect such devices
— diverse transmission power patterns of di�erent radio technologies can be used to
uniquely identify them. For example, devices using Time-Division Multiplexing
(TDM) will exhibit very di�erent power patterns (in the time-frequency
axis) compared to the devices using Frequency-Division Multiplexing (FDM).
Similarly, frequency hoppers such as Bluetooth devices will exhibit di�erent
power patterns (i.e., they emit energy in di�erent parts of the spectrum)
compared to fixed-frequency devices such as ZigBee devices. In Chapters 3
and 4, we explain our non-WiFi device detection and interference estimation
procedures that make use of this fundamentally property of transmission power
patterns. Our solutions use a combination of machine learning and signal
clustering mechanisms to uniquely identify di�erent non-WiFi devices based
on their distinct transmission power patterns. We comment on the applicability
of our work in context of future wireless LANs and newer wireless technologies
in Chapter 7. Next, we formulate a precise problem statement and subsequently
explain the various components involved in our overall solution.

Problem statement and solution approach

We now explain the target setting considered in this thesis along with the
problem statement and our overall approach to the solution.

13

Target Setting: We consider the problem of identifying the reason for wireless
losses and characterizing wireless interference in the context of enterprise
wireless LANs. These WLANs have been deployed in a number of enterprises to
provide wireless connectivity [34, 134]. Typically, an enterprise WLAN consists
of a set of wireless APs that are connected through a wired backplane. A number
of these deployments also follow a centralized WLAN architecture [148, 149],
wherein the key configuration and management functionality is o�oaded to
a central control element — a WLAN controller. Typically the central WLAN
controller is responsible for configuration and management of network policies,
access control and other security settings, and radio resources [148]. Many
wireless vendors such as Cisco [4], Aruba [10], Meru [9] have employed such
central controller-based WLAN architectures.

In this thesis, we consider the target setting of such centralized enterprise
WLAN architecture, and develop practical systems employing commonly
available WiFi hardware to detect and quantify wireless interference (WiFi
to WiFi interference as well as non-WiFi to WiFi interference) and distinguish
them from losses due to weak signal scenarios. We comment on the applicability
and extensibility of our proposed mechanisms in the context of other wireless
environments (e.g., home wireless LANs) that do not host a central controller
in Chapter 7.

Problem statement: Given a typical enterprise WLAN setting with many
di�erent APs and clients, all employing common WiFi hardware, the high level
question this thesis has tried to address is the following —

“How can we detect, quantify and localize interference from
WiFi sources as well as non-WiFi sources in real-time, and all
using the limited information exposed by today’s commodity WiFi
hardware?”

More specifically, we would like to investigate the design of systems
and models that run on top of commodity WiFi hardware and enable such
functionality. That is, despite the limited information provided by current
wireless cards (e.g., only received power information as opposed to raw signal

14

information), our goal is to develop systems and models that employ such
commonly available WiFi hardware and are able to (i) detect WiFi as well as
non-WiFi device transmissions and uniquely identify di�erent interferers that
can be possibly of the same type (e.g., two di�erent cordless phones of the
same make and model), (ii) quantify the exact interference impact of each such
WiFi or non-WiFi device, and (iii) physically pin-point the location of each such
device without having information about the transmit power of this device. We
now give a high level overview of the overall solution approach taken in this
dissertation.

Interference detection and quantification

Systems based on post-mortem
analysis of wireless losses

Systems based on predictive
models for wireless losses

COLLIE Airshark, WiFiNet

Weak signal,
WiFi to WIFi interference

Non-WiFi to WiFi interference WiFi to WIFi interference

FLUID

Figure 1.4: Our approach to the solution in this thesis. COLLIE, Airshark and
WiFiNet are systems based on post-mortem analysis of wireless losses, whereas
the FLUID system is based on a modeling approach that is predictive in nature.
As shown in the figure, each of these systems can handle di�erent sub-problems
in broad space of interference detection and quantification.

Overall solution approach: We address the overall interference detection
and quantification problem stated above by breaking the problem into few sub-
problems and developing solutions for each of them. To begin with, we only
consider WiFi to WiFi interference, and develop COLLIE (Chapter 2), a system
to distinguish between WiFi packet losses that happen due to “weak signal”

15

and “wireless collisions” (i.e., packet losses due to WiFi to WiFi interference).
COLLIE uses limited information exposed by current wireless cards (e.g., RSSI
and packets received in error) to accomplish this. We then focus our attention on
the problem of non-WiFi to WiFi interference, and develop Airshark (Chapter 3)
— a system that can detect various non-WiFi devices using WiFi-only hardware.
Airshark uses received power information and learns the transmission power
patterns of di�erent non-WiFi devices to distinctly identify them in real-
time. Next, we design and develop WiFiNet (Chapter 4) that builds upon
Airshark, and can quantify and localize interference from various non-WiFi
interfering sources. WiFiNet uses time synchronization based heuristics and
clustering procedures that operate on received power information to estimate
the amount of interference from each non-WiFi device. Propagation model
based localization procedures that operate on this limited received power
information are then developed to physically locate each device. Subsequently,
we extend WiFiNet to handle both WiFi and non-WiFi interfering sources. An
underlying theme of these systems is the reliance on real-time observations and
post-mortem analysis of wireless losses. For example, in these systems, wireless
packet losses (once they happen) are measured and correlated with other
ongoing WiFi/non-WiFi device transmissions to understand the impact of
these interferers. In the last part of this thesis, we design and implement
FLUID (Chapter 5) that explores an alternative approach based on models
that are predictive in nature — interaction between wireless links are modeled
using signal strength based models to understand the interference relationships
between these links. These models are then used to develop interference
mitigation strategies. FLUID di�ers from our previous approaches in the sense
that the interference relationships between wireless links are derived before the
event of a packet loss using predictive models. Further, we note that FLUID is
complementary to the above approaches — FLUID uses limited amount of
active measurements to predict the extent of interference and possibly avoid
it. Whereas, COLLIE attributes the reason for a packet loss (after it occurs) to
a particular interferer or weak signal. Thus, one can envision a system that
employ both COLLIE and FLUID to tackle the problem of WiFi interference —
FLUID can be used to plan the transmissions of the network to avoid interference

16

from di�erent WiFi links in the network (Chapter 5), whereas COLLIE can be
used to detect WiFi interference that emanates in spite of such planning, due
to the environmental dynamics (e.g., client mobility or new clients associating
to the network). We explain each of these approaches in detail in the next few
sections.

�.� �������� �������� ������ ������ ��� �� ����������

We start by studying the nature of wireless packet losses, and by developing
mechanisms which help identify the cause of a wireless packet loss. In this
sub-problem, we consider interference from only WiFi sources (WiFi to WiFi
interference). It is well known that packet losses on a wireless link, in presence
of WiFi to WiFi interference, can happen either due to a collision or due to a
weak signal strength experienced at the receiver. However, discerning the exact
cause of a loss, once it occurs, is known to be quite di�cult. Determining the
cause of a packet loss is significant as this dictates the corresponding action
to be taken at the link layer — for collisions, the transmitting station would
perform an exponential back-o�, while for weak signal the link-adaptation
algorithm controlling data-rate, transmit power parameters etc., would be
invoked. Unfortunately the inability to determine the cause of a packet loss in
real-time, has forced a rather conservative design for 802.11 — to start with, the
cause is ‘blindly’ attributed to collision (thereby invoking exponential back-o�)
for a certain fixed number of re-transmission attempts. Further, continued
failure of the re-transmissions is taken as an indication of weak signal thereby
triggering rate-adaptation. Such a biased approach of assuming collision as the
default cause for packet loss would translate to wasted bandwidth, energy and
significant performance degradation. This is especially true in mobile usage
scenarios where packet losses are more likely to occur due overly optimistic
settings for data-rate/transmit power parameters rather than due to collisions.

Our focus in this sub-problem has been to develop techniques to perform
loss diagnosis, specifically between collision and weak signal, which are
readily implementable on contemporary 802.11 hardware. Current 802.11
hardware exposes limited information such as RSSI of the packet received

17

in error. Using some custom driver modifications, we were also able to retain
a copy of the packet received in error. Now, comparing the original packet
with the packet received in error, one can obtain the failure bit patterns —
the exact bit positions that were incorrectly received. We then focussed on
understanding the failure bit patterns of the received data for loss diagnosis in
802.11. Based on our analysis, we designed COLLIE - COLLision Inferencing
Engine, which immediately determines the cause of a packet loss without
requiring any additional transmission from the wireless client, but by using
explicit feedback from the receiver. COLLIE performs intelligent analysis on
received data through a combination of various metrics such as bit-level and
symbol-level error patterns and received signal strength. Our design consists
of two components: (i) algorithms which separate the cases of collision from
weak signal through empirical analysis; (ii) a protocol which capitalizes on
the judgement from the algorithms by aptly adjusting the correct link-level
parameters for 802.11. Through extensive evaluations conducted on regular
laptops over a wide range of experiments, we find that our collision inferencing
mechanisms worked fairly well despite only limited information (e.g., RSSI,
failure bit patterns) provided by current WiFi hardware. Our results show that
COLLIE can provide up-to 95% accuracy in detecting packet collisions while
allowing a configurable false positive rate of 2%.

We demonstrated that collision inferencing mechanisms can be used to
enhance the performance of existing link adaptation mechanisms running on
top of commodity WiFi hardware. As an example, we showed that collision-
aware ARF (auto-rate fallback) can lead to throughput improvements between
20 - 60% depending on the channel conditions and the amount of congestion
present in the wireless environment. Through an emulation of voice calls made
using Voice-over-WiFi phones, we also showed that COLLIE reduces power
consumption on the client devices by decreasing the retransmission related
costs by 40% for di�erent mobility scenarios.

18

�.� ��������� ���-���� ������� ����� ���� ��������

In this piece of work, we focus our attention to the problem of non-WiFi to
WiFi interference. As mentioned before, a plethora of non-WiFi RF devices
“share” the unlicensed spectrum along with WiFi networks. Current 802.11
systems, however, are oblivious to the presence of non-WiFi RF devices and
hence su�er from severe performance degradation in their presence. Existing
solutions require that the WLAN administrators either use sophisticated signal
analyzers [3, 66], expensive software radios [98, 139] or deploy specialized
hardware [12] to detect non-WiFi devices. Our focus in this work was to
develop a detection mechanism that can be readily integrated in today’s WLAN
networks without requiring any additional sensors or hardware. To this end,
we developed Airshark— a system that detects multiple non-WiFi RF devices
in real-time and using only commodity WiFi hardware.

To motivate the need for systems such as Airshark, we first performed a
detailed measurement study to characterize the prevalence of non-WiFi RF
devices in typical environments — homes, o�ces, and various public spaces.
This study was conducted for more than 600 hours over several weeks across
numerous representative locations using signal analyzers [3] that establish
the ground truth. We then designed and implemented Airshark, a software
system that is capable of detecting non-WiFi devices using WiFi hardware.
Airshark operates on top of additional data — spectrum samples, or power per
sub-carrier information — provided by emerging WiFi cards such as Atheros
AR 9280 to perform non-WiFi device detection. These spectrum samples
provide slightly more fine-grained information about the power in the spectrum
compared to the received signal strength indicator (RSSI) [133]. However, it
turns out that detecting non-WiFi devices using WiFi hardware is a challenging
problem despite this additional information about the spectrum provided by
emerging WiFi cards for several reasons as explained previously. We also
summarize these challenges in Chapter 3. The underlying reason for these
challenges stems from the fact that a WiFi card is not designed to decode a
non-WiFi transmission. Further, a WiFi card has to operate under a limited view
of spectrum (typically 20 MHz) and in addition to the low sampling resolution

19

provided by these cards (Chapter 3), various other signal characteristics that
are available through spectrum analyzer hardware (e.g., phase and modulation
properties) are not available from today’s WiFi cards.

To overcome these challenges, Airshark takes advantage of unique prop-
erties exhibited by di�erent non-WiFi devices as observed in the power per
sub-carrier samples provided by emerging WiFi cards — di�erent radio
technologies in the unlicensed band employ di�erent physical layer and MAC
layer mechanisms (e.g., modulation, channel access methods, protocols) leading
to distinct transmission power patterns in the spectrum. Airshark learns these
distinct transmission patterns of di�erent devices and uses them as signatures
to perform device detection. Specifically, Airshark operates on these power
per sub-carrier samples and extracts unique features that capture the spectral
and temporal properties of di�erent non-WiFi device transmissions. These
features are robust to changes in the wireless environment and are used by
Airshark’s light-weight decision tree classifiers to perform device detection in
real-time. Airshark is able to detect multiple non-WiFi devices including fixed
frequency devices (e.g., ZigBee, analog cordless phone), frequency hoppers
(e.g., Bluetooth, game controllers like Xbox), and broadband interferers (e.g.,
microwave ovens). Airshark has an average detection accuracy of 91-96%, even
in the presence of multiple simultaneously active RF devices operating at a
wide range of signal strengths (-80 to -30 dBm), while maintaining a low false
positive rate. Further, Airshark’s performance is comparable to commercial
signal analyzers that employ custom hardware. Through a deployment in two
production WLANs, we also demonstrated Airshark’s potential in monitoring
the RF activity, and understanding performance issues that arise due to non-
WiFi interference.

To the best of our knowledge, Airshark is the first system that provides
a generic, scalable framework to detect non-WiFi RF devices using only
commodity WiFi cards and enables non-WiFi interference detection in today’s
WLANs.

20

�.� ����������� ���-���� ������������ ����� ���� ��������

The previous piece of work, Airshark, can individually detect the presence of non-
WiFi devices using WiFi hardware, however, it cannot quantify the interference
impact of a non-WiFi device on a WiFi link. In this piece of work, we tackle
the problem of deconstructing non-WiFi interference and quantifying their
impact on WiFi links. Specifically, we design and develop WiFiNet, a system
that leverages collaboration between multiple WiFi nodes running Airshark,
to address both quantification of interference impact as well as localization of
these interferers, as we explain below.

Quantifying non-WiFi interference impact in real-time: The mere presence of a
non-WiFi device, as detected by Airshark, in the vicinity of a WiFi transmitter is
not always harmful. For instance, an active analog cordless phone at a specific
location, may only have a minimal impact on a particular WiFi link. We call
such a low-impact non-WiFi device, a minnow. On the other hand, a microwave
oven radiating a significant amount of energy in its vicinity might cause severe
disruption to nearby WiFi links. We call such an interferer, a whale. We note that
the impact of interference from the same non-WiFi device can quickly change
over time. For instance, if the microwave oven’s setting is adjusted to operate
with a low power level, this device may suddenly turn into a minnow. On the
other hand, if the cordless phone user moves to a di�erent location which is
closer to the WiFi link, this device might turn into a whale with respect to this
WiFi link. It is even possible that the impact of the cordless phone on the WiFi
link changes due to properties of the WiFi link itself. For example, when the
WiFi link is operating at 54 Mbps, the disruptive impact of the cordless phone is
quite high, with the impact decreasing as a rate adaptation algorithm reduces
the WiFi link’s PHY rate. WiFiNet tracks this continuously changing impact
of non-WiFi transmitters on WiFi communication in real-time, adjusting its
interference estimates immediately as operating parameters change (e.g., the
microwave power setting is changed, or the WiFi device’s PHY rate selection
algorithm starts operating with a higher rate).

Locating non-WiFi interferers: WiFiNet also determines the physical location
of such non-WiFi transmitters immediately, so that the precise source of such

21

interference can be determined, and if needed, such interfering devices can
either be re-configured or disabled.

In sum, the unique aspects of WiFiNet are four-fold: First, WiFiNet quantifies
the actual interference impact of each non-WiFi device on specific WLAN tra�c
in real-time, which can vary from being a whale — a device that currently
causes a significant reduction in WiFi throughput — to being a minnow — a
device that currently has minimal impact. WiFiNet continuously monitors
changes in a device’s impact that depend on many spatio-temporal factors.
Second, it can accurately discern an individual device’s impact in presence of
multiple and simultaneously operating non-WiFi devices, even if the devices
are of the exact same type. Third, it can pin-point the location of these non-
WiFi interference sources in the physical space. Finally, and most importantly,
WiFiNet meets all these objectives not by using sophisticated and high resolution
spectrum sensors, but by using emerging o�-the-shelf WiFi cards that provide
coarse-grained energy samples per sub-carrier. Our deployment and evaluation
of WiFiNet demonstrated its high accuracy — interference estimates were
within ±10% of the ground truth and the median localization error was 6 4
meters. Through these new and unique capabilities, WiFiNet provides new RF
management tools for WiFi environments using o�-the-shelf WiFi NICs only,
obviating the need for sophisticated wireless hardware. In fact, WiFiNet can
be easily implemented and integrated into enterprise WiFi APs to achieve
improved mitigation strategies against non-WiFi interference for enterprise
environments.

To the best of our knowledge, WiFiNet is the first system that is capable
of quantifying and localizing the interference from non-WiFi devices using
WiFi-only hardware.

�.� �������� ������������ ������� ����� ����� �������� ��������

We now describe an alternative technique for understanding losses due to
wireless interference. While the above pieces of work are based on post-mortem
analysis of wireless packet losses, the conflict model [133] based approach
described here is predictive in nature — interaction between wireless links are

22

modeled using signal strength based models to understand the “conflicts” (i.e.,
carrier sensing and interference relationships) between WiFi links.

We focus on links using commodity WiFi hardware. Such hardware
provides us with information about RSSI as well as packet reception status.
RSSI/Signal strength based models are then built using probe measurement
tra�c, which helps us capture the interference relationships between di�erent
WiFi links before the event of an actual packet loss. These models can then be used
to feed into interference mitigation mechanisms that can help avoid interference
between the links of interest.

In this work, we only consider WiFi to WiFi interference and defer similar
modeling of non-WiFi interference scenarios for future work (Chapter 7).
Specifically, we model the interference between WiFi links that use di�erent
channel widths, and devise mechanisms to mitigate WiFi to WiFi interference
using e�cient channelization mechanisms as we explain below.

WiFi channels traditionally have been defined strictly to be a pre-defined
center frequency and a specific channel width. It is known that interference
in such fixed width systems can be modeled using signal strength based
mechanisms [133]. In this work, explore the alternative method of modeling
interference in the context of flexible channels — channels in which the center
frequency and bandwidth are picked based on tra�c demands, noise and
interference levels across a spectral band. Such flexibility in channelization
is known to be particularly useful to improve spectrum e�ciency. Recently,
there has been a growing attempt to explore the usefulness of flexible channels
in the context of 802.11-based wireless networks [36, 110]. Current 802.11
hardware can provide a limited amount of software-level flexibility that allows
transceivers to operate on such flexible channels, e.g., a fixed number of channel
widths (5, 10, 20, and 40 MHz) and a permissible set of center frequencies in
the 2.4 GHz or the 5.8 GHz band [67].

Using this flexibility, our focus in this work has been to develop interference
models and to build an 802.11 wireless LAN employing flexible channelization
that uses o�-the-shelf wireless cards. In contrast to current 802.11 systems that
use channels of fixed width, our proposed system, called FLUID, configures
all Access Points (APs) and their clients running on top of commodity WiFi

23

hardware with channels defined by an appropriate choice of center frequency
and width. A key property that has to be accounted for when employing
variable channel widths is the following — increasing channel width for a
single, isolated link potentially allows greater throughput. However, given the
total transmit power used by the wireless card is a constant [36], the power
per unit frequency reduces for larger widths leading to reduced SNR and poor
connectivity in longer links. In FLUID, we developed modeling techniques to
exploit this property of channel widths to increase transmission concurrency
and improve the spatial reuse, leading to improved throughputs in a network
wide setting. We showed that a main challenge in designing this system stems
from unique e�ects of interference in presence of multiple transmitters in a
network-wide setting, not explored before.

The core of FLUID consists of two key components: — (i) An e�cient way
to construct interference models for conflict graphs when channels can be
on many di�erent center frequencies and widths through a small number of
measurements, and (ii) an interference mitigation mechanism that employs
flexible channelization. We show how enhancing flexible channelization with
data scheduling can maximize the number of simultaneous transmissions and
result in improved throughputs. We have implemented FLUID using a central
controller (assuming an enterprise WLAN setting) on a 50-node testbed using
o�-the-shelf Atheros wireless cards. Our results show that in our network,
FLUID improves the throughput by a median of 66% compared to an approach
using fixed width channels.

We note that FLUID is complementary to mechanisms such as COLLIE.
FLUID uses active probe measurements to build models that capture inter-
ference relationships between links of interest prior to the event of a packet
loss. Such mechanisms are predictive and preventive in nature. Whereas
COLLIE’s algorithms are put to use after the event of packet loss, and they help
attribute the cause of a packet loss to interference or weak signal. Thus, one
can potentially use both FLUID and COLLIE together in WLAN — FLUID can
help determine the interference relationships between WiFi links beforehand
and help avoid interference, whereas COLLIE can help reason out the losses

24

that occur in spite of such planning owing to the dynamics of the environment
(e.g., new clients associating to the network, client mobility etc.)

Next, we present a summary of the contributions of this thesis.

�.� �������������

Commodity WiFi cards provide us with limited flexibility and provide us with
limited signal information such as RSSI and power per sub-carrier information.
However, such WiFi hardware is commonly available and is an integral part
of WLANs deployed today. Thus, any software solution that works on top of
today’s WLAN hardware would be readily deployable compared to solutions
that take advantage of advanced features and flexibility provided by software
radios. Keeping the constraints of these commodity WiFi cards in mind, our
overall contribution of this dissertation is to enable interference interference
estimation (WiFi to WiFi interference as well as non-WiFi to WiFi interference) in
today’s WLANs. Using commonly available WiFi hardware, we have designed
and implemented models and systems that help us improve our understanding
of wireless interference in today’s indoor wireless environments. Specifically,
the contributions of this dissertation are described as follows:

1. We designed and implemented COLLIE, the first prototype running on top
of mainstream WiFi cards that can discern whether a packet loss was due
to a collision or due to weak signal. While it was well known that packet
loss can happen due to either of these reasons, how to determine the exact
cause of a loss, once it occurs, was hitherto unknown. COLLIE discerns the
cause of a loss by analyzing limited information provided by current WiFi
cards. Specifically, it makes sure of RSSI information provided per packet
along with the (corrupted) packet’s contents. COLLIE’s design consists of
two components: (i) algorithms that expose statistical di�erences between
collision and signal degradation based losses through empirical analysis;
(ii) a protocol that capitalizes on the judgment from the algorithms by
aptly adjusting the correct link-level parameters for 802.11. Evaluation
results demonstrated that COLLIE can provide up-to 95% accuracy in

25

detecting collisions while allowing a configurable false positive rate of
2%.

2. We designed and implemented Airshark, the first research prototype
that uses only o�-the-shelf WiFi cards to detect the presence of non-WiFi
wireless devices in real-time. To understand the need for systems such
as Airshark, we performed the first measurement study that established
the widespread usage and prevalence of non-WiFi devices across many
locations [131]. Despite the challenge that WiFi cards cannot decode
transmissions from non-WiFi devices, we were able to use limited signal
information (power per sub-carrier information) from emerging WiFi
cards and devise techniques to detect these devices. While the received
power information provided by these cards is not enough to entirely
reconstruct the signal, we identify a unique property that can be used to
di�erentiate between the devices — di�erent non-WiFi devices exhibit
distinct transmission power patterns owing to the use of distinct radio
technologies. Airshark learns these patterns and builds device-specific
signatures using tools from machine learning. These signatures help
Airshark detect multiple non-WiFi devices including fixed frequency
devices (e.g., ZigBee devices, fixed-frequency analog cordless phones),
frequency hoppers (e.g., Bluetooth devices, frequency hopping cordless
phones, game controllers like Xbox), and broadband interferers (e.g.,
microwave ovens). Airshark has a detection accuracy of 91-96% and
a low false positive rate (< 0.1%), even in the presence of multiple
simultaneously active RF devices operating at a wide range of signal
strengths (-80 to -30 dBm). Through a deployment in two production
WLANs, we demonstrated that Airshark can help diagnose non-WiFi
interference issues.

3. We designed and implemented WiFiNet, the first system that detects,
quantifies and localizes interference impact of various non-WiFi sources
using commodity WiFi hardware alone. WiFiNet builds upon Airshark,
and uses limited signal information (power per sub-carrier) from multiple
WiFi APs to uniquely identify di�erent non-WiFi devices even if they

26

are of the same type (e.g., two identical models of cordless phones).
WiFiNet uses statistical clustering methods and tools from machine
learning to segregate transmissions from individual non-WiFi devices.
Using fine-grained timing analysis, WiFiNet also estimates the exact
interference impact of each non-WiFi transmitter on every WiFi link in
the WLAN, even in the presence of multiple simultaneously operating
non-WiFi devices. Further, WiFiNet can physically locate the devices
using WiFi-only hardware by employing novel localization mechanisms.
In WiFiNet’s design we also take into account carrier sensing interference,
interference from WiFi sources and multiple PHY rates of operation used
by WiFi links. WiFiNet’s evaluation showed that interference estimates
are within ±10% of the ground truth and the median localization error is
64 meters.

4. We designed and implemented FLUID, a system that explores the
alternative technique of mitigating wireless interference using models
for conflict graphs [133] in WiFi networks. Traditionally, channels in
typical 802.11 systems correspond to a pre-defined center frequency
and a specific channel width. While it is common knowledge that
using flexible channels (channels with arbitrary center frequency and
width) can improve spectrum e�ciency, their use in a practical setting
with multiple APs and clients running real 802.11 hardware had not
been explored before. Using measurements on a 50-node testbed, we
showed that a key challenge in designing an 802.11 system employing
flexible channelization stems from a unique e�ect of interference in
these networks — the link conflicts (i.e., carrier sensing and interference
relationships) depend on the center frequency and channel widths used.
We then designed FLUID, a system that (i) uses empirical models to
capture the conflicts when channels can be on many di�erent center
frequencies and widths, (ii) improves network throughput using an
interference mitigation mechanism that employs flexible channelization.
FLUID’s evaluation on a testbed using o�-the-shelf wireless cards showed
throughput improvements of up to 59%.

27

�.� �������

The rest of this thesis is organized as follows. In the first part of the thesis, we
develop a practical approach to detect WiFi to WiFi interference by developing
mechanisms that distinguish between packet losses due to wireless collisions
and those to weak signal (Chapter 2). In the second part of the thesis, we focus
our attention to the problem of non-WiFi to WiFi interference (Chapters 3 and 4).
We present Airshark, a mechanism to detect non-WiFi devices using WiFi-only
hardware in Chapter 3. In Chapter 4, we present WiFiNet, a system that builds
upon Airshark to quantify the interference impact of di�erent non-WiFi devices
and physically pin point their location. In the last part of this thesis, we explore
the alternative method of understanding interference through a modeling based
approach in the context of flexible channels (Chapter 5). We compare our work
with alternative methods to understand and quantify interference in indoor
wireless environments in Chapter 6. We conclude and discuss the avenues for
further research in Chapter 7.

28

� ����������� ������ ��� �� �������� ����������

�.� ����������

In this chapter, we describe our work on understanding and mitigating wireless
interference by studying the nature of wireless packet losses. We restrict
our attention to interference from WiFi devices only. We focus on non-WiFi
interference in the subsequent chapters. Specifically, we try to design and
develop e�cient mechanisms to identify the correct cause of a packet loss in the
presence of potential WiFi to WiFi interference. Fundamentally, in such a setting,
wireless link losses can be caused either due to a packet collision (WiFi to WiFi
interference) or due to weak signal strength at the wireless receiver. Attributing
the correct cause for a packet loss is particularly important for wireless media,
as the decision triggers di�erent choice for link parameters and thus a�ects the
overall performance of the wireless link. We call this problem of determining
the accurate cause of a packet loss as collision or weak signal, as loss diagnosis.

Loss diagnosis in 802.11 can be challenging since by design, the receiver
provides binary (i.e. whether the packet was correctly received or was lost)
feedback on the reception properties of a packet. Suppose, for the purposes of
our study, we had a receiver that could provide detailed diagnostic information
on the reception properties of a packet. Then, could we do better than the
current mechanisms used in 802.11? More systematically, we pose the following
question in this chapter —

By analyzing the bit-level error patterns in received data and other
physical layer metrics (e.g. at the symbol-level) can we determine the cause
of a packet loss between collision and weak signal? Further, can we do this
based on a single (or a few) packet loss(es) in real-time?

Implications of loss diagnosis

Determining the cause of a packet loss is significant as this dictates the
corresponding action to be taken at the link layer — for collisions, the
transmitting station would perform an exponential backo�, while for weak

29

Backoff
Tune retry counts

Packet Loss

Weak SignalCollision

Tune data−rate, power
Maybe handoff ?

Event

Cause

Action

Figure 2.1: The cause of a packet loss determines which wireless link parameters
have to be changed. We only consider interference from WiFi sources in the
sub-problem considered in this chapter.

signal the rate-adaptation algorithm would be invoked. Figure 2.1 illustrates
what must be ideally done in the event of a packet loss. Depending on the
specific reason for packet loss, di�erent actions should be taken at the link
layer, each corresponding to adjusting di�erent transmission parameters of the
wireless interface as follows:

• Collision: In case of a collision related loss, the Congestion Window (CW)
parameter should be double as determined by the Binary-Exponential
Backo� (BEB) algorithm used in 802.11.

• Weak signal: For packet loss due to a weak signal, adaptation of data-
rate and transmit power parameters must be performed as dictated by a
specific data-rate/power adaptation algorithm.

Unfortunately the inability to determine the cause of a packet loss in real-
time, has forced a rather conservative design for 802.11 — to start with, the cause
is ‘blindly’ attributed to collision (thereby invoking exponential backo�) for a
certain fixed number of re-transmission attempts. Further, continued failure of
the re-transmissions is taken as an indication of weak signal thereby triggering
rate-adaptation. For example, on experiencing a packet loss the transmitting
station doubles the CW parameter using the BEB algorithm performs a re-
transmission of the packet after appropriate backo�s (given by the new CW). If a
certain number of re-transmissions fail, as determined by the tunable Short/Long
Retry Count parameters, the station then decides to attribute the cause for packet

30

loss to weak signal, thereby triggering a rate/transmit power change by using
appropriate rate adaptation algorithms such as Auto-rate Fallback (ARF) [80]
or SampleRate [28].

Such a biased approach of assuming collision as the default cause for packet
loss might be tolerable for the dominant laptop-based usage scenarios where a
user is static most of time while using the network. However, such usage patterns
are increasingly changing [64] [33] as certain emerging class of applications
such Voice or Video over WiFi allow a user to be mobile while communicating
with network. This creates new scenarios where constant adaptation of link
parameters becomes necessary in order to operate the link at the ‘best’ setting.
In such high mobility usage scenarios, packet losses are more likely to occur
due overly optimistic settings for data-rate/transmit power parameters rather
than due to collision. Therefore, the biased approach used by 802.11 could incur
severe performance penalties by incorrectly attributing initial packet losses to
collision.

As we move to a diverse class of applications and usage scenarios for 802.11,
it is becoming increasingly important to be able to diagnose the cause of a
packet loss at the link layer and trigger the correct method of adaptation
in real-time. Attempts to address this problem in an indirect manner, have
been observed in the design of recent approaches for rate-adaptation such
as RRAA [162]. In RRAA, the station does not immediately conclude that a
packet loss is due to collision or weak signal. In particular, the station performs
an ‘RTS test’ to identify whether a certain packet loss was due to a hidden
terminal, and if so, adaptively enables the RTS option to guard against future
possibility of collisions from such hidden terminals. (CARA [21] also uses this
approach to handle a slightly di�erent problem.) However, the philosophy
employed in RRAA and also mimicked in 802.11 is to conduct active tests
or experiments (by retransmitting or sending an RRTS) to estimate collision
probabilities. Being indirect, these approaches require multiple transmissions
and observations to discern the channel conditions, thereby taking a long
time to converge to the correct transmission parameters. In contrast, we
employ a direct approach; we immediately determine the cause of a packet
loss without requiring any additional transmissions from the wireless client,

31

but by conducting an empirical post-factum analysis of the explicit feedback
obtained from the receiver.

The rest of this chapter is organized as follows. First, we present a detailed
overview of our proposed solution, COLLIE (Collision Inferencing Engine),
with an emphasis on the design choices made and various components involved
in the system. Next, we identify an appropriate set of metrics used for loss
diagnosis through targeted experiments designed to understand collisions
and a subsequent empirical analysis. Based on these metrics, we design a
basic collision inferencing scheme and evaluate its accuracy through rigorous
experimentation. We then propose enhancements to our basic approach using
feedback from multiple APs. Finally, we modify an existing link adaptation
mechanism using the COLLIE framework and evaluate its performance through
experiments over various static and mobile scenarios.

�.� �� �������� �� ������

The ideas in COLLIE are motivated from the collision detection mechanism
employed by the Ethernet. An Ethernet station easily detects a collision by
comparing the transmitted data with the simultaneously received data. We
show that, even in 802.11 systems, given a copy of the originally transmitted
packet and the received error packet, it is possible to make an educated inference
about the cause of transmission failure based on the error bit-patterns of this
single packet. A number of di�erent metrics are used to discern this cause,
the most unique among them are the ones derived out of the constituent PHY-
layer symbols of the packet. Once the cause of a packet loss is identified, this
information is fed into link adaptation algorithms (such as transmit power, data
rate adaptation etc.) enabling them to more intelligently select the right set of
transmission parameters for all subsequent communication.

Our design (Figure 2.2) involves three components: a client module which
resides on a handheld or a wireless laptop, an AP module which resides on an
access point, and an optional backend COLLIE server which implements some
additional algorithms. COLLIE places most of the optimization logic on the
client device, and requires only a minimal support from the APs.

32

7

Figure 1.3: Experiment setup designed to study various metrics for inferring
collisions.

multiple APs belong to the same administrative domain. As with the basic case,
APs here also implement a very minimal relaying of information that assists in
collision inferencing.

We evaluate our algorithm quantitatively by considering the following (i)
the probability of false positives – that is, the cases where our algorithm outputs
a collision while the actual cause was weak signal, and (ii) the accuracy – that is,
the number of cases our algorithm identifies as collision over the total number
of cases. Our design of metrics, discussed later in this section, allows the
link management algorithms to specify a certain false positive rate, making the
exact accuracy a function of this rate. This choice is by design, thereby leaving
a significant control to the actual link management algorithms in the client.
However, to provide a sense of the strong performance of our algorithms we
observe that, given a desired false positive rate of 2%, our basic algorithms
achieve an accuracy of about 60% on average, while the multi-AP enhacements
achieve an accuracy of 95% on average.

Basic Approach (Single AP)

The basic algorithm for collision inferencing presented here, uses a simple
relaying back of a data packet received in error. This relaying is done by
the intended recipient of the packet which is the AP to which the client is
associated to (in the infrastructure mode of 802.11). Our observations indicate
that due to receiver-synchronization using the physical-layer preamble, data
that immediately follows the preamble is seldom found in error — this includes
critical fields in the header such as the source and destination MAC addresses.

COLLIE Sever (optional)

AP Module

7

Figure 1.3: Experiment setup designed to study various metrics for inferring
collisions.

multiple APs belong to the same administrative domain. As with the basic case,
APs here also implement a very minimal relaying of information that assists in
collision inferencing.

We evaluate our algorithm quantitatively by considering the following (i)
the probability of false positives – that is, the cases where our algorithm outputs
a collision while the actual cause was weak signal, and (ii) the accuracy – that is,
the number of cases our algorithm identifies as collision over the total number
of cases. Our design of metrics, discussed later in this section, allows the
link management algorithms to specify a certain false positive rate, making the
exact accuracy a function of this rate. This choice is by design, thereby leaving
a significant control to the actual link management algorithms in the client.
However, to provide a sense of the strong performance of our algorithms we
observe that, given a desired false positive rate of 2%, our basic algorithms
achieve an accuracy of about 60% on average, while the multi-AP enhacements
achieve an accuracy of 95% on average.

Basic Approach (Single AP)

The basic algorithm for collision inferencing presented here, uses a simple
relaying back of a data packet received in error. This relaying is done by
the intended recipient of the packet which is the AP to which the client is
associated to (in the infrastructure mode of 802.11). Our observations indicate
that due to receiver-synchronization using the physical-layer preamble, data
that immediately follows the preamble is seldom found in error — this includes
critical fields in the header such as the source and destination MAC addresses.

AP Module

packet
feedback

Collision
Inference Link Adaptation

Error

COLLIE Client

Figure 2.2: Design of our COLLIE system which consists of three modules —
the client which implements a majority of the logic, the AP which performs
minimal packet relaying and an optional backend server (for some specific
multi-AP extensions).

Client module: The client-side COLLIE module resides at the link-layer
and interacts with the link adaptation algorithms. It has access to the physical
layer and MAC layer parameters and metrics such as signal strength, packet
receptions, etc. Our implementation of COLLIE client module was done in a
standard Linux 2.6 kernel that resides within the wireless driver as a separate
kernel module. This module implements logic to discern the cause of a packet
loss to either a collision or a weak signal. This process in the client is facilitated
through specific feedback from the receiver, i.e., the AP, when the latter receives
a packet in error. In particular, the AP relays the entire packet, received in
error, back to the client for analysis. (Of course, this is only possible if the AP
manages to correctly decode the source MAC address of the packet in error,
which is actually quite typical.) Even though it appears wasteful, this unique
and somewhat simple, type of feedback, in combination with the collision
inferencing logic at the client, provides surprisingly good performance as shown
by our experiments in section 2.5.

33

The collision inferencing algorithm analyzes the data packet that was
received in error and makes an educated inference as to the cause of the packet
loss. It uses a set of metrics such as received signal strength (communicated
as a part of the feedback process), patterns in bit-errors and their distribution,
patterns in symbol errors and their distribution, etc. One interesting observation
in our work is that symbol-level errors were quite useful in discerning cause of packet
losses. Section 2.3 studies this in detail through an empirical analysis.

AP module: As shown in Figure 2.2, the AP-side implementation of
COLLIE includes a module, that implements the component to provide the
kind of client feedback described above (and in further detail in Section 2.3).
Finally, it optionally implements constructs that allow a central COLLIE server
to more accurately determine the cause of a packet loss.

COLLIE server (optional): This is an optional component in our design.
The COLLIE server implements a simple collision inferencing algorithm that
utilizes feedback from multiple access points in the network. We show (in
Section 2.3) that the accuracy of our basic collision detection mechanisms can
be greatly improved by using a COLLIE server in additional to the above two
modules.

�.� ��������-����� ��������� ���������

A critical component in COLLIE is the client side component which takes
advantage of feedback from the receiver such as an AP in WLAN (or a peer
if in ad-hoc mode) in order to infer the cause of a packet loss (weak signal
versus collision). COLLIE implements most of the logic on the client device
requiring minimal support from the receivers. We describe two versions of
this inferencing algorithm. (i) A basic version (Single-AP), which requires
minimal support from the AP to which the client is associated to. This
applies to environments where a single AP provides wireless access to the
entire establishment, such as in hotspots – co�ee shops, apartments, etc. (ii)
An enhanced version (Multi-AP) which builds on top of the basic version,
by leveraging input from two or more APs to provide very high accuracy
in detecting collisions. This approach applies to enterprise WLANs where

34
7

Figure 1.3: Experiment setup designed to study various metrics for inferring
collisions.

multiple APs belong to the same administrative domain. As with the basic case,
APs here also implement a very minimal relaying of information that assists in
collision inferencing.

We evaluate our algorithm quantitatively by considering the following (i)
the probability of false positives – that is, the cases where our algorithm outputs
a collision while the actual cause was weak signal, and (ii) the accuracy – that is,
the number of cases our algorithm identifies as collision over the total number
of cases. Our design of metrics, discussed later in this section, allows the
link management algorithms to specify a certain false positive rate, making the
exact accuracy a function of this rate. This choice is by design, thereby leaving
a significant control to the actual link management algorithms in the client.
However, to provide a sense of the strong performance of our algorithms we
observe that, given a desired false positive rate of 2%, our basic algorithms
achieve an accuracy of about 60% on average, while the multi-AP enhacements
achieve an accuracy of 95% on average.

Basic Approach (Single AP)

The basic algorithm for collision inferencing presented here, uses a simple
relaying back of a data packet received in error. This relaying is done by
the intended recipient of the packet which is the AP to which the client is
associated to (in the infrastructure mode of 802.11). Our observations indicate
that due to receiver-synchronization using the physical-layer preamble, data
that immediately follows the preamble is seldom found in error — this includes
critical fields in the header such as the source and destination MAC addresses.

7

Figure 1.3: Experiment setup designed to study various metrics for inferring
collisions.

multiple APs belong to the same administrative domain. As with the basic case,
APs here also implement a very minimal relaying of information that assists in
collision inferencing.

We evaluate our algorithm quantitatively by considering the following (i)
the probability of false positives – that is, the cases where our algorithm outputs
a collision while the actual cause was weak signal, and (ii) the accuracy – that is,
the number of cases our algorithm identifies as collision over the total number
of cases. Our design of metrics, discussed later in this section, allows the
link management algorithms to specify a certain false positive rate, making the
exact accuracy a function of this rate. This choice is by design, thereby leaving
a significant control to the actual link management algorithms in the client.
However, to provide a sense of the strong performance of our algorithms we
observe that, given a desired false positive rate of 2%, our basic algorithms
achieve an accuracy of about 60% on average, while the multi-AP enhacements
achieve an accuracy of 95% on average.

Basic Approach (Single AP)

The basic algorithm for collision inferencing presented here, uses a simple
relaying back of a data packet received in error. This relaying is done by
the intended recipient of the packet which is the AP to which the client is
associated to (in the infrastructure mode of 802.11). Our observations indicate
that due to receiver-synchronization using the physical-layer preamble, data
that immediately follows the preamble is seldom found in error — this includes
critical fields in the header such as the source and destination MAC addresses.

7

Figure 1.3: Experiment setup designed to study various metrics for inferring
collisions.

multiple APs belong to the same administrative domain. As with the basic case,
APs here also implement a very minimal relaying of information that assists in
collision inferencing.

We evaluate our algorithm quantitatively by considering the following (i)
the probability of false positives – that is, the cases where our algorithm outputs
a collision while the actual cause was weak signal, and (ii) the accuracy – that is,
the number of cases our algorithm identifies as collision over the total number
of cases. Our design of metrics, discussed later in this section, allows the
link management algorithms to specify a certain false positive rate, making the
exact accuracy a function of this rate. This choice is by design, thereby leaving
a significant control to the actual link management algorithms in the client.
However, to provide a sense of the strong performance of our algorithms we
observe that, given a desired false positive rate of 2%, our basic algorithms
achieve an accuracy of about 60% on average, while the multi-AP enhacements
achieve an accuracy of 95% on average.

Basic Approach (Single AP)

The basic algorithm for collision inferencing presented here, uses a simple
relaying back of a data packet received in error. This relaying is done by
the intended recipient of the packet which is the AP to which the client is
associated to (in the infrastructure mode of 802.11). Our observations indicate
that due to receiver-synchronization using the physical-layer preamble, data
that immediately follows the preamble is seldom found in error — this includes
critical fields in the header such as the source and destination MAC addresses.

R1 R2
R

Collision

T1 T2

distance d

Capture effect Capture effect

Figure 2.3: Experiment setup designed to study various metrics for inferring
collisions.

multiple APs belong to the same administrative domain. As with the basic case,
APs here also implement a very minimal relaying of information that assists in
collision inferencing.

We evaluate our algorithm quantitatively by considering the following (i) the
probability of false positives — that is, the cases where our algorithm outputs a
collision while the actual cause was weak signal, and (ii) the accuracy — that is,
the number of cases our algorithm identifies as collision over the total number
of cases. Our design of metrics, discussed later in this section, allows the link
management algorithms to specify a certain false positive rate, making the
exact accuracy a function of this rate. This choice is by design, thereby leaving
a significant control to the actual link management algorithms in the client.
However, to provide a sense of the strong performance of our algorithms we
observe that, given a desired false positive rate of 2%, our basic algorithms
achieve an accuracy of about 60% on average, while the multi-AP enhacements
achieve an accuracy of 95% on average.

Basic Approach (Single AP)

The basic algorithm for collision inferencing presented here, uses a simple
relaying back of a data packet received in error. This relaying is done by
the intended recipient of the packet which is the AP to which the client is
associated to (in the infrastructure mode of 802.11). Our observations indicate
that due to receiver-synchronization using the physical-layer preamble, data

35

C (24,36,48)
S(24,36,48)

.

 0
 20
 40
 60
 80

 100

−90 −80 −70 −60 −50 −40 −30
RSS

C
D

F
(%

)

Figure 2.4: CDF of Received Signal Strength (RSS)

S(24,36,48)

C(24,36,48)
.

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
BER

C
D

F
(%

)

Figure 2.5: CDF of Bit-Error Rate (BER)

that immediately follows the preamble is seldom found in error — this includes
critical fields in the header such as the source and destination MAC addresses.
Thus, practically for all cases of packets received in error at the AP, it was
possible to relay it back to the correct associated client. By analyzing these
packets, we design a necessary and su�cient set of metrics comprising of bit-
error rates (BER), symbol-error rates (SER), error-per-symbol (EPS), and joint
distributions of these, which can act as strong indicators for packets su�ering

36

S(24,36
 48)

C(24,36,
 48)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

CD
F

(%
)

EPS
Figure 2.6: CDF of Error Rate Per Symbol (EPS)

collision versus signal attenuation. We now describe the experiments designed
to understand collisions and identify the set of metrics used for loss diagnosis.

Experiment Design for Detecting Collisions

Figure 2.3 shows the experiment setup designed to induce collisions. T1 and T2

are two transmitters placed a certain distance apart. Receivers R1 and R2 are co-
located with respective transmitters. Receiver R was placed in common range
of both transmitters and was modified to capture and log all packets received
(whether correctly or in error). The chances of collision is greatly increased
by disabling the MAC-level backo�s at both T1 and T2. The signal between the
transmitters T1, T2 and the receiver R was strong enough so as to not cause any
bit-level errors due to attenuation. This was verified through rigorous testing.
Both transmitters send broadcast packets at a fixed data-rate, thus eliminating
any acknowledgments. All three receivers are opportunistically synchronized
using common transmissions received thereby maintaining a clock skew of less
than 10 µs.

To construct “ground truth,” we determined the actual set of collision events
by analyzing the synchronized packet logs at the receivers and identify packets
that overlapped in time.

37

Given that we know a certain collision occurred, R observes one of the
following: (1) A packet is received correctly, (2) a packet is received in error, and
(3) no packet is received. Case 1 occurs when signal from one of the transmitter
dominates the other resulting in a correct reception due to capture e�ect. Case
2 occurs when the respective signals interfere causing one of the packets to be
received but with errors. Case 3 occurs when both the transmissions were
perfectly synchronized, which resulted in corruption at the physical-layer
header/preamble and resulting in a complete frame loss.

We performed various runs of this experiment with di�erent data-rates
and packet sizes of 1400 and 200 bytes representing long/short packets. The
distance between the transmitters was set so as to sustain a certain data-rate for
the broadcast packets. This ensured that no packets were received in error at R
due to weak signal.

Packets in-error due to weak signal were collected using a simple process.
An AP-client pair was used with unicast tra�c sent from the client to the AP.
Rate adaptation was enabled. Client mobility created a dynamically varying
channel thereby triggering link adaptation at a packet loss. These packet losses
were recorded at the AP along with additional information such as the Received
Signal Strength (RSS), data-rate, etc., and used in our analysis. During the
experiment, care was taken to ensure no interfering transmitters were present,
thus avoiding the possibility of packet losses due to collisions.

Empirical Analysis

We present an empirical analysis of a set of metrics over the data collected
through targeted experiments designed in the previous subsection.
1. Received signal strength (RSS): The received signal strength (RSS) refers to
the aggregate signal plus interference (S+ I) measured in dBm. This is reported
by most device drivers including the Madwifi [8] driver that we used for our
experiments. The intuition behind using RSS is the following: for packets
su�ering a collision, their RSS is usually higher than that of packets su�ering
signal attenuation for the same data-rate. This observation directly follows

38

from the observation that packets su�ering signal attenuation should have a
low RSS.

Figure 2.4 plots a cumulative distribution function (CDF) for the distribution
of RSS values for packets lost due to collision and weak signal. The RSS
distributions are further sorted based on their data-rates; for purposes of clarity
we only show data-rates of 24, 36 and 48 Mbps. In all the following plots,
the legend ’C’ indicates packets in error due to collision and ’S’ indicates the
packets in error due to weak signal. From the plot in Figure 2.4 one can observe
a clear distinction in the distribution of RSS for the two categories given the
same data-rate. For example, in this experiment, 98% of packets in error due to
weak signal have an RSS of about -73 dBm or less, while only 10% of packets
su�ering collision have RSS of -73 dBm or less. Thus, by using a ‘cuto�’ value
of -73 dBm, and it would be possible to capture about 90 % of collision cases
while incurring a false-positive rate of 2%. Thus, RSS can act as a good metric
for inferring the cause of packet loss.

S(24,36
 48)

C 24

C 48

C 36

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

CD
F

(%
)

S−Score
Figure 2.7: CDF of S-Score

2. Bit-error rate (BER): Much like RSS, bit-error rates (BER) for weak signal
versus collision can act as a metric to distinguish with. Figure 2.5 plots the CDF
of BERs for packets in error, sorted on the data-rates of 24, 36 and 48 Mbps. It
follows from this plot that packets received in error due to collision have much
wider distribution of BER values. For example much like RSS, 98% of packets

39

Collision (1400,1400)

Collision (1400,200)

Signal

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sy
m

bo
l E

rro
r R

at
e

(S
ER

)

Error Per Symbol (EPS)

Figure 2.8: Scatter-plot of SER Vs EPS

Signal

Collision(1400, 200)

Bit Error Rate (BER)

Si
gn

al
 S

tre
ng

th
 (R

SS
)

Collision (1400, 1400)

 0 0.1 0.2 0.3 0.4 0.5 0.6

−50
−55
−60
−65
−70

 −75
−80
−85
−90

Figure 2.9: Scatter-plot of BER vs RSS.

in error due to signal have a BER of 12% or less, while only 24% of packets in
error due to collision have BERs of 12% or less.
3. Metrics for capturing ‘symbol-level’ errors: A ‘symbol’ refers to a sequence
of bits which are transmitted concurrently through a joint encoding and
modulation method at the physical layer. For example, at 6 Mbps, the
Orthogonal Frequency Division Multiplexing scheme (OFDM) uses a set of 48

40

sub-carriers each modulating 1 bit of information. This results in the encoding
of a sequence of 48 bits in a single time-unit, which defines a symbol. Studying
the patterns of symbols in error as opposed to just bits received in error can
provide valuable information about the cause of a packet loss. We define a
symbol to be in error if any of the bits received as a part of that symbol are
in error. We studied three di�erent metrics which exhibit certain interesting
properties which we leverage in our collision inference algorithm. Note that
each of these metrics are computed over every single error packet:

(i) Symbol-error rate (SER): Like the BER, this is the ratio of the total number
of symbols received in error to the total number of symbols in the data packet.
The symbol error rate indicates the actual ‘amount’ if error present in the packet.
We have studied SER for packets in error due to collision and weak signal and
we found significant overlap in its distributions. An analysis of this metric and
its distributions lead us to the design of other interesting metrics which show
strong results in inferring collision, described next.

(ii) Error-per symbol (EPS): This metric refers to the average number of bits
in error among all the symbols which are in error. This is indicative of the
‘amount’ of error per symbol — unlike bits which have only one possible way
of being in error, a 48-bit symbol received in error could have varying ‘amounts’
of error represented by the number of bits in error. We observe that packets in
error due to collision have a larger amount of error per symbol. This is shown
in Figure 2.6 which plots the CDF of EPS for both collision and weak signal. For
example, 98% of packets in error due to weak signal have an EPS of 28% or less,
while 45% packets in error due to collision have the same EPS of 28% or less.

(iii) Symbol error score (S-Score): From our study of the distributions of
the symbols in error, we found that packets in collision had larger bursts
of contiguous symbols in error. We designed a metric which uses ‘symbol
burst lengths’ and computes a ‘score’ which we call the S-Score that amplifies
such ambient patterns in symbol error burst lengths. We compute S-Score as
=

Pn
i=1 |Bi|

2, where |Bi| represents the length of the symbol-error bursts for
burst number i. Figure 2.7 plots the CDF of the S-Score values for packets in
error due to collision versus weak signal. We find that, for example, 98% of the
packets in error due to weak signal have an S-Score of 500 or less, while 26%

41

Table 2.1: Collision Detection Accuracy and False Positive Rates

BER EPS S-Score Metric-Vote
Accuracy 0.550 0.524 0.441 0.597

False Positives 0.0057 0.022 0.0126 0.024

Table 2.2: Correlation Between the Metrics
BER/EPS S-Score/EPS BER/S-Score

Collision 0.840 0.963 0.854
Weak Signal 0.981 0.993 0.975

packets in error due to collision have an S-Score of 500 or less. Thus, by using a
cuto� of 500, we would be able to detect 74% of collision cases while incurring
a false positive rate of 2%.

(iv) Joint distribution of SER and EPS: By considering the joint distribution
of these two metrics it is possible to distinguish error packets in collision. The
intuition follows from the observation that error packets in collision su�er
higher symbol-error rates and correspondingly higher errors-per symbol as a
function of the symbol-error rates. From the scatter plot shown in Figure 2.8,
we can observe that for higher values of SER, the values of EPS get streamlined
into a high yet narrow range allowing for a more accurate prediction of collision
versus signal as to the cause of a packet loss.

Collision Inferencing Algorithm — Metric-Vote Scheme

Our basic collision inferencing algorithm is fairly simple. It computes the
metrics discussed above on the single data packet that was received in error
(relayed back by the AP). If any of the metrics indicate (vote for) a collision,
the algorithm outputs collision as its inference. Even with such an aggressive
approach, over the experiments performed in this section, we find that for
a false positive rate of 2% (a tunable parameter), our basic approach yields
a reasonable accuracy. Table 2.1 shows the results for the metrics BER, EPS,
S-Score and Metric-Vote. For the cases of collision, we see that Metric-Vote
has an accuracy of about 60% on an average. Later in Section 5.7, we show

42

that even a 60% accuracy in collision prediction can translate to significant
gains in terms of throughput and energy. Next in section 2.3, we also study
further enhancements to this basic scheme using support from multiple APs
that can improve the accuracy to about 95% on average. For each of the metrics
and the Metric-Vote scheme, Table 2.1 also shows the false positive rate — the
percentage of error packets (caused due to weak signal) which the algorithms
incorrectly identify as the cases of collision. We see that Metric-Vote scheme
also has a low false positive rate of 2.4%. It is important to understand that
the collision detection algorithms should maintain a low false positive rate.
While it is beneficial to be able to decide if the packet was in error due to weak
signal or collision, it would be rather costly in terms of retransmissions if we
incorrectly identify a packet to be in error because of collision, when in reality
it was due to a weak signal. Table 2.2 shows the correlation between the metrics
– the percentage of cases where the metrics agree on their decision about the
cause of the packet loss. For the cases of weak signal, the correlation between
the metrics is extremely high (around 98%) evident from the fact that all the
metrics have a very low false positive ratio. For the cases of collision, we see
that the correlation drops down a little to around 85%, which improves the
accuracy of Metric-Vote scheme.

Some observations: From our empirical study in the previous subsection,
we found that there were a certain set of cases where inferring collision was
becoming a challenge. We now explain these issues in detail:

(i) Using RSS as a metric: Although in general RSS acted as a good indicator
of the cause of a frame loss, in some of the cases it was not able to distinguish well
between the cases of collision and weak signal. This can be mainly attributed
to the observed temporal variation in RSS [133]. Estimating a ’cut-o�’ value
also becomes harder because the delivery probability is actually a function
of (i) signal-to-noise ratio S/(I +N) rather than (S + I) which is reported by
most wireless cards and (ii) receiver sensitivity [133]. However, we feel that
RSS is a promising metric and could act very well when used with additional
information such as RF profile of the receivers.

(ii) Impact of physical-layer capture: We found that there were cases of collision
where the average BER for the error packet was very low due to whats known

43

as the capture e�ect. Capture e�ect refers to the phenomenon that during a
collision the packet with stronger signal is received with almost no errors or a
few bits in error. This experiment set up used to measure the impact of capture
e�ect was very similar to that shown in Figure 2.3 except that now the receiver
R is very close to the transmitter T1 which resulted in a strong capture. By
carefully searching for the packets received in error from T1 (due to a collision
from a concurrent transmission from T2), we found that about 80% of packets
in collision experiencing capture e�ect, were received with about 12% or less
bits in error. This falls within our target margin of 2% false positives for the
signal case thereby impacting accuracy. The accuracy of Metric-Vote scheme
for strong capture e�ect cases was found to be around 28%.

(iii) E�ect of colliding packet size: Using the set up in Figure 2.3, we also
measured the bit error rates in collision cases for varying packet sizes. Figure
2.9 shows a scatter plot of RSS and BER for the cases of (i) weak signal (ii)
collision between a 1400-byte packet and a 200-byte packet (iii) collision between
two 1400-byte packets. While it is clear that using RSS in this case clearly
distinguishes between the cases of collision and weak signal, using BER does
not provide the same level of accuracy. In particular, we see that it becomes
di�cult to distinguish between cases (i) and (ii) using BER because a smaller
colliding packet (200-byte in this case) would cause fewer bits in error. On the
other hand, as shown in Figure 2.8, the joint distribution of SER and EPS is
useful in distinguishing these cases.

Multi-AP assisted enhancements

The accuracy of our basic approach can be greatly improved if feedback from
multiple APs on the packet loss could taken into consideration. This is feasible
in an enterprise WLAN where APs operate in a coordinated fashion as a part
of a single network. First, we present an algorithm that uses feedback from
multiple APs to improve the accuracy of collision inferencing. Next, through
experiments, we show that such an approach can yield good results in a practical
setting.

44

7

Figure 1.3: Experiment setup designed to study various metrics for inferring
collisions.

multiple APs belong to the same administrative domain. As with the basic case,
APs here also implement a very minimal relaying of information that assists in
collision inferencing.

We evaluate our algorithm quantitatively by considering the following (i)
the probability of false positives – that is, the cases where our algorithm outputs
a collision while the actual cause was weak signal, and (ii) the accuracy – that is,
the number of cases our algorithm identifies as collision over the total number
of cases. Our design of metrics, discussed later in this section, allows the
link management algorithms to specify a certain false positive rate, making the
exact accuracy a function of this rate. This choice is by design, thereby leaving
a significant control to the actual link management algorithms in the client.
However, to provide a sense of the strong performance of our algorithms we
observe that, given a desired false positive rate of 2%, our basic algorithms
achieve an accuracy of about 60% on average, while the multi-AP enhacements
achieve an accuracy of 95% on average.

Basic Approach (Single AP)

The basic algorithm for collision inferencing presented here, uses a simple
relaying back of a data packet received in error. This relaying is done by
the intended recipient of the packet which is the AP to which the client is
associated to (in the infrastructure mode of 802.11). Our observations indicate
that due to receiver-synchronization using the physical-layer preamble, data
that immediately follows the preamble is seldom found in error — this includes
critical fields in the header such as the source and destination MAC addresses.

COLLIE Sever

AP Module

7

Figure 1.3: Experiment setup designed to study various metrics for inferring
collisions.

multiple APs belong to the same administrative domain. As with the basic case,
APs here also implement a very minimal relaying of information that assists in
collision inferencing.

We evaluate our algorithm quantitatively by considering the following (i)
the probability of false positives – that is, the cases where our algorithm outputs
a collision while the actual cause was weak signal, and (ii) the accuracy – that is,
the number of cases our algorithm identifies as collision over the total number
of cases. Our design of metrics, discussed later in this section, allows the
link management algorithms to specify a certain false positive rate, making the
exact accuracy a function of this rate. This choice is by design, thereby leaving
a significant control to the actual link management algorithms in the client.
However, to provide a sense of the strong performance of our algorithms we
observe that, given a desired false positive rate of 2%, our basic algorithms
achieve an accuracy of about 60% on average, while the multi-AP enhacements
achieve an accuracy of 95% on average.

Basic Approach (Single AP)

The basic algorithm for collision inferencing presented here, uses a simple
relaying back of a data packet received in error. This relaying is done by
the intended recipient of the packet which is the AP to which the client is
associated to (in the infrastructure mode of 802.11). Our observations indicate
that due to receiver-synchronization using the physical-layer preamble, data
that immediately follows the preamble is seldom found in error — this includes
critical fields in the header such as the source and destination MAC addresses.

AP Module

packet
Error

Client

Time of receipt of packets,
bit rate and packet size

Client

packet

Figure 2.10: Illustration of multi-AP approach for collision inference used in
COLLIE.

By leveraging feedback from two or more APs, we present an algorithm
that can detect such cases and improve the accuracy of collision inferencing.
Our algorithm works by aggregating such feedback at a central COLLIE server,
shown earlier in Figure 2.2. The APs implement two functionalities : (i) they
synchronize among each other much like the receivers R1 and R2 did for
our experiments earlier in this section. This synchronization is done using
opportunistic common packets received by the two APs on either the wired
or the wireless segment. (ii) for any packet received in error, or for physical-
layer error indications, the APs send a message to the COLLIE server with the
time the packet (or error indication) was received, the source/destination MAC
addresses and data-rate information for the packet received in error. Figure 2.10
illustrates this approach.

The COLLIE server implements a simple collision inferencing algorithm
that uses time-of-receipt information about packets received in error at the APs,
and combines this with information about the data-rate of the packet received
to make an inference as to whether the packets did experience a collision. As a
part of this algorithm the COLLIE server compares input from pairs (or a set)
of APs that are known to be within range of each other. Detection of APs that
are within range of each other is implemented through passive monitoring of
beacons. Scenarios where APs are within each other’s range are becoming fairly

45

 improves accuracy)(Multi−AP approach (Basic approach works well)
Low Capture Effect

Multi−APBasic
Basic

Multi−AP Basic
Multi−AP Basic

Multi−AP

High Capture EffectC
ol

lis
io

n
D

et
ec

tio
n

A
cc

ur
ac

y

 0.2
 0.4
 0.6
 0.8

 1

 0

Figure 2.11: Improvements in collision detection accuracy using the Multi-AP
approach.

common in todays WLANs. In fact, dense deployment of APs is promoted as
an architecture for next-generation WLANs [10].

We have implemented this approach over standard Linux based APs and
clients. The collision inference algorithm was implemented over a central
COLLIE server. Through experiments over a simple testbed consisting of two
APs and two clients we study the accuracy of our approach of using feedback
from multiple APs.

Figure 2.11 shows the accuracy in collision inference using our multi-AP
implementation. For the two scenarios where capture e�ect is dominant
which were computed through experimentation within our indoor network
environment, the multi-AP approach improves the accuracy of collision
detection to about 95%. These two scenarios correspond to configurations
where packet transmission dominate from one of the two clients respectively.
For the two scenarios where capture e�ect is weak, both approaches provide
good levels of accuracy.

�.� ����� ������ ��� ���� ����������

We now present a simple, yet e�ective protocol used to enhance link adaptation
mechanisms based on the COLLIE framework. The algorithm implemented

46

COLLIE Module Summary of tasks
Client Collision inference, selective re-tx based on Di�

AP Return packet in error, re-construct packet on Di�
Server Facilitate multi-AP collision detection

Table 2.3: COLLIE -based link adaptation tasks in di�erent modules

5 10 15 20 25

0.37
0.52

0.33

0.17

0.02

Distance (meters)

 0
 100
 200
 300
 400
 500
 600

w/o COLLIE
w COLLIE

Th
ro

ug
hp

ut
 (k

bp
s)

Figure 2.12: Throughput gains for static scenario

in this simple protocol is only to serve as a reference implementation of
COLLIE and is by no means is an optimal algorithm. The goal of this description
is to demonstrate how COLLIE can be e�ective in making more intelligent link
adaptation decisions leading to improvements in throughput.
COLLIE-based link adaptation protocol: The goal of this link adaptation
protocol is to utilize the collision inference results available from COLLIE in
deciding how to best react to a packet loss and its consequent recovery. Consider
a client which transmits a packet to an AP, but the latter receives the packet
in error. Using feedback mechanisms, as outlined in Section 2.3 and shown in
Figure 2.2, the client can infer the cause of the packet error. This knowledge
is, then, fed into the link adaptation decision at the client. If the packet loss
is due to a collision, then the correct adaptation mechanism is to perform
exponential backo�. On the other hand, if the packet loss is determined to be

47

 0

 500

 1000

 1500

 2000

 20 40 60 80 100 120

Th
ro

ug
hp

ut
 (k

bp
s)

Time (secs)

w/o COLLIE

w/ COLLIE

Figure 2.13: Throughput variation over time
7

Figure 1.3: Experiment setup designed to study various metrics for inferring
collisions.

multiple APs belong to the same administrative domain. As with the basic case,
APs here also implement a very minimal relaying of information that assists in
collision inferencing.

We evaluate our algorithm quantitatively by considering the following (i)
the probability of false positives – that is, the cases where our algorithm outputs
a collision while the actual cause was weak signal, and (ii) the accuracy – that is,
the number of cases our algorithm identifies as collision over the total number
of cases. Our design of metrics, discussed later in this section, allows the
link management algorithms to specify a certain false positive rate, making the
exact accuracy a function of this rate. This choice is by design, thereby leaving
a significant control to the actual link management algorithms in the client.
However, to provide a sense of the strong performance of our algorithms we
observe that, given a desired false positive rate of 2%, our basic algorithms
achieve an accuracy of about 60% on average, while the multi-AP enhacements
achieve an accuracy of 95% on average.

Basic Approach (Single AP)

The basic algorithm for collision inferencing presented here, uses a simple
relaying back of a data packet received in error. This relaying is done by
the intended recipient of the packet which is the AP to which the client is
associated to (in the infrastructure mode of 802.11). Our observations indicate
that due to receiver-synchronization using the physical-layer preamble, data
that immediately follows the preamble is seldom found in error — this includes
critical fields in the header such as the source and destination MAC addresses.

AP

Collision

Client

T1

T2

Figure 2.14: Setup for inducing collisions

due to a weak signal, then we allow an existing rate adaptation algorithm to
explore and find a better data rate to transmit future packets. In general, any
existing rate adaptation algorithm, e.g., RRAA, SampleRate, AARF, and ARF,
can be used here to leverage such feedback from COLLIE. We explain this in
the context of one of the simplest algorithm – Auto Rate Fallback (ARF). ARF
uses the history of previous transmission error rates to adaptively select the
data rates used for future transmissions. That is, after a number of consecutive
successful transmissions, the sender attempts to transmit at a higher rate and
if the delivery of this frame is unsuccessful, it immediately falls back to the
previously supported mode. In our implementation, we augment the ARF
algorithm with COLLIE to make it collision-aware.

48

Run1 Run2 Run3

0.38

0.60
0.19

 0

 100

 200

 300

 400

 500

Th
ro

ug
hp

ut
 (k

bp
s)

w/o COLLIE
w COLLIE

Figure 2.15: Throughput gains of COLLIE in presence of collision sources

In addition, the feedback on the erroneous packet provides another
opportunity of optimization during re-transmission of a incorrectly received
packet at the AP — selective re-transmission of packet segments in error. By
examining the erroneous packet, the client knows exactly the set of bits that
were in error. If the number of bits in error is low (say, not more than 20%
of the entire packet), then it is advantageous to create a Di� bitmap of these
bits in error and to send only this Di� bitmap to the AP piggybacked with
the next packet transmission. If the Di� bitmap is correctly received, then the
AP can re-construct the original packet thereby reducing the retransmission
related costs associated with the client. Table 2.3 summarizes the di�erent
implementation aspects of this protocol. Note that our implementation has all
the overheads due to the AP’s transmission of the erroneous packet feedback,
which is therefore, reflected in our performance evaluation presented next.

�.� ������������ �������

We now present an evaluation of COLLIE-enhanced link adaptations through
experiments conducted in various static and mobile scenarios:

Experiment #1: Static scenario – Figure 2.12 shows the throughput of
a static wireless client (with and without COLLIE) for increasing distance

49

 0

 200

 400

 600

 800

 1000

 20 40 60 80 100 120

Th
ro

ug
hp

ut
 (k

bp
s)

Time (secs)

w/ COLLIE

w/o COLLIE

Figure 2.16: Observed throughput for mobile scenario

Slow Medium High
 0

 10
 20
 30
 40
 50
 60
 70
 80
 90

w/o COLLIE
w COLLIE

A
vg

 R
et

ra
ns

m
iss

io
ns

 (%
)

Figure 2.17: Wasted (re)-transmission as a function of channel variability
induced through node mobility.

between the client and the AP. We see that as the distance between the client
and AP increases, there is a corresponding drop in the throughput for both the
cases. However, using COLLIE results in throughput gains of as high as 52%.
On an average, we observed throughput gains of around 30%. Note that, these
results account for the transmission overhead involved in the receiver feedback.

50

We see that after an initial increase, the throughput gains drop with the increase
in distance. This is because as the channel becomes error-prone, it also becomes
di�cult for the AP to successfully transmit the feedback. Figure 2.12 shows
that increase in throughput gains are almost negligible (2%) for these cases.
Figure 2.13 plots the throughput of the client at a particular distance over time.
As before, we see that using COLLIE improves the throughput by around 30%.

Experiment #2: Additional collision sources – We repeated the above
experiment in presence of additional collision sources (Figure 2.14). Figure 2.15
shows the throughput improvements with and without COLLIE . We see that
using COLLIE results in throughput gains of as high as 60%.

Experiment #3: Mobile scenario – For this experiment, the client position
was continuously varied thereby inducing dynamic channel conditions. Figure
2.16 plots the throughput over time for both with and without COLLIE . We
observe that throughput improvements using COLLIE range from around 15%
to as high as 65% for the mobile scenarios. This is because COLLIE provides the
rate adaptation mechanism with the information about the cause of the packet
loss, thereby helping it choose the correct transmission parameters.

Experiment #4: Emulating a voice call – In this experiment, we wanted
to emulate the behavior of voice tra�c on the wireless medium. To do this,
we made a 4 minute voice call using the Netgear SPH101 VoWiFi phone over
Skype. For the duration of the call, we collected the set of packets that were
sent, the time instants when they were sent, the packet sizes etc. and then
replayed the exact sequence of transmissions between the wireless laptop and
the access point. We conducted this experiment for low, medium and high
mobility scenarios. The ‘Slow’ speed represents a stationary user with sporadic
movement while the ‘High’ speed corresponds to a walking user continuously
moving with a speed of about 0.5 ft/sec inside a building. Figure 2.17 shows
the number of wasted 802.11 transmissions — transmissions that were not
successfully received at the Access Point (AP). Under relatively high mobility
conditions the percentage of wasted transmissions for 802.11 exceeded 80%.
However, under the same mobility patterns, COLLIE achieves a reduction in
wasted transmissions by a 40% for each of the mobility scenarios. This would

51

not only improve the voice quality but also result in lesser energy costs on the
battery constrained mobile device.

�.� ������� �� ������

In this chapter, we have tried to address the fundamental issue of identifying
the cause of an erroneous packet reception in 802.11 systems. Particularly,
we focussed on a setting where packet losses can be due to WiFi to WiFi
interference or due to weak signal strength at the WiFi receiver. We presented
the design and implementation of COLLIE, a system implementing a collision
inferencing engine that analyzes the data packet received in error and makes
and educated inference about the cause of the packet loss. It uses a combination
of metrics such as patterns in bit and symbol error rates, their distribution
etc., to infer the cause of a single packet loss — attributing it to collision
(WiFi to WiFi interference) or weak signal. Unlike most of the previous
approaches, our proposed mechanism, COLLIE employs a direct approach
by using explicit feedback from the receiver to immediately determine the
cause of the packet loss. Through rigorous evaluations conducted on regular
laptops over a wide range of experiments, we find that our collision inferencing
mechanisms can provide upto 95% accuracy in detecting packets in collision
while allowing a configurable false positive rate of 2% and lead to throughput
improvements between 20-60%. Through an emulation of voice call (made
using the Netgear SPH101 Voice-over-WiFi phone), we also showed that
COLLIE reduces retransmission related costs by 40% for di�erent mobility
scenarios.

52

� ��������� ���-���� �� ������� ����� ���� ��������

�.� ����������

We now focus our attention to the problem of interference from non-WiFi
devices. The unlicensed wireless spectrum continues to be home for a
large range of such non-WiFi devices. Examples include cordless phones,
Bluetooth headsets, various types of audio and video transmitters (security
cameras and baby monitors), wireless game controllers (Xbox and Wii), various
ZigBee devices (e.g., for lighting and HVAC controls), even microwave ovens,
and the widely deployed WiFi Access Points (APs) and clients. Numerous
anecdotal studies have demonstrated that links using WiFi, which is a dominant
communication technology in this spectrum, are often a�ected by interference
from all of these di�erent transmitters in the environment. In Figure 3.1, we
present results from our own experiments where a single, good quality WiFi
link was interfered by di�erent non-WiFi devices—an analog phone, a Bluetooth
device, a videocam, an Xbox controller, an audio transmitter, a frequency
hopping cordless phone, a microwave, and a ZigBee transmitter—when placed
at di�erent distances from the WiFi link.

The figure shows the normalized UDP throughput under interference,
relative to the un-interfered WiFi link, as a function of the interfering signal
strength from these di�erent devices. While all of these devices impede WiFi
performance to a certain degree, some of these devices, e.g., the videocam and
the analog phone, can totally disrupt WiFi communication when they are close
enough (> 80% degradation at RSSI > -70 dBm, and throughput drops to zero
in some cases). Furthermore, our measurements across diverse home, o�ce,
and public environments, and over many weeks, show that many of these
devices are routinely visible at all times of the day often at significantly high
signal levels to be disruptive to WiFi links. Figure 3.2 shows an example of
non-WiFi RF activity in a dorm-style apartment building, where some respite
is observable only in the wee hours of the night.

53

 0

 0.2

 0.4

 0.6

 0.8

 1

-100 -90 -80 -70 -60 -50 -40 -30

N
o

rm
.

U
D

P
 T

h
ro

u
g

h
p

u
t

RSSI (dBm)

Analog phone

Videocam

Analog Phone
AudioTx

Bluetooth
FHSS Phone

Videocam
Microwave

Xbox
Zigbee

Figure 3.1: Degradation in UDP throughput of a good quality WiFi link (WiFi
transmitter and receiver were placed 1m apart) in the presence of non-WiFi
devices operating at di�erent signal strengths.

-90

-75

-60

-45

-30

-15

14:00 16:00 18:00 20:00 22:00 0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00

R
S

S
I
(d

B
m

)

Time (hour:min)

Microwave Oven
Bluetooth

Game Controller
FHSS Phone

Analog Phone
Zigbee

Figure 3.2: Average RSSI from di�erent non-WiFi RF device instances shown
against the device start times. Measurements were taken at a dorm-style
apartment (location L16, dataset §3.2) for a 24 hour period.

Non-WiFi RF device detection: Traditional WiFi systems (Access Points
or clients) utilize various mechanisms in the 802.11 MAC to detect and avoid
interference from other WiFi sources, and are largely oblivious to non WiFi
sources. However, with the continued growth of non-WiFi activity in this shared

54

unlicensed band and the consequent impact on WiFi performance, hardware
vendors and network administrators are increasingly exploring techniques to
better detect non-WiFi sources of interference. Among commercial systems,
Spectrum XT [2], AirMaestro [3], and CleanAir [5] are examples of custom
hardware systems that integrate unique spectrum analyzer functionality to
facilitate non-WiFi device detection. In the research community, work by Hong
et. al. [66] utilizes a modified channel sounder and associated cyclostationary
signal analysis to detect non-WiFi devices. RFDump [98] uses USRP GNU
Radios and phase/timing analysis along with protocol specific demodulators
to achieve similar goals. In this chapter, we focus on techniques to detect
non-WiFi RF devices but using commodity WiFi hardware instead of more
sophisticated capabilities available in dedicated spectrum analyzers, expensive
software radios, or any additional specialized hardware.

Using commodity WiFi hardware for non-WiFi RF device detection:
Commercial spectrum analyzers or software radio platforms have specialized
capability of providing “raw signal samples” for large chunks of spectrum
(e.g., 80-100 MHz) at a fine-grained sampling resolution in both time domain
(O(105) to O(106) samples per second) and frequency domain (as low as 1
kHz bandwidth). In contrast, commodity WiFi hardware, can provide similar
information albeit at a much coarser granularity. For instance, Atheros 9280
AGN cards, as available to us, can only provide RSSI measurements for an
individual WiFi channel (e.g., a 20 MHz channel) at a resolution bandwidth of
OFDM sub-carrier spacing (e.g., 312.5 kHz), and at a relatively coarse timescale
(O(103) to O(104) samples per second). This capability is part of the regular
802.11 frame decoding functionality. If we can design e�cient non-WiFi device
detection using signal measurement samples drawn from commodity WiFi
hardware, then it would be easy to embed these functionalities in all WiFi
APs and clients. By doing so, each such WiFi AP and client can implement
appropriate mitigation mechanisms that can quickly react to presence of
significant non-WiFi interference. The following are some examples.

1) A microwave oven, which typically emits high RF energy in 2.45-2.47
GHz frequencies, turns on in the neighborhood of an AP (operating on channel

55

11) significantly disrupting the throughput to its clients. The AP detects this
microwave, infers its disruptive properties, and decides to switch to a di�erent
channel (say, 1).

2) An AP-client link experiences short term interference from an analog
cordless phone in a narrowband (< 1 MHz). The AP detects the analog phone
and its characteristics, and hence decides to use channel width adaptation
functions to operate on a narrower, non-overlapping 10 MHz channel instead
of the usual 20 MHz channel.

Summarizing, if non-WiFi device detection is implemented using only
commodity WiFi hardware, both these examples are possible natively within
the AP and the client without requiring any additional spectrum analyzer
hardware (either as add-on boards or chipsets) to be installed in them.

Our proposed approach — Airshark

Motivated by the above examples, we propose Airshark, a system that detects
non-WiFi RF devices, using only the functionality provided by commodity WiFi
hardware. Airshark, therefore, is a software-only solution which addresses
multiple goals and challenges described next.

1) Multiple, simultaneously active, RF device detection: While Airshark can
most accurately detect individual non-WiFi RF devices, it is also designed to
e�ectively discern a small number of simultaneously operating non-WiFi devices,
while keeping false positives low.

2) Real-time and extensible detection framework: Airshark operates in real-time
allowing the WiFi node to take immediate remedial steps to mitigate interference
from non-WiFi devices. In addition, its detection framework is extensible—
adding hitherto unknown RF device profiles requires a one-time overhead,
analogous to commercial systems based on spectrum analyzers [3].

3) Operation under limited view of spectrum: Being implemented using com-
modity WiFi hardware, Airshark assumes that typically only 20 MHz spectrum
snapshots (equal to the width of a single WiFi channel) are available for
its use in each channel measurement attempt. This limitation implies that
Airshark cannot continuously observe the entire behavior of many non-WiFi

56

frequency hoppers (e.g., Bluetooth). Further, the resolution of these samples
are at least 2 orders of magnitude lower than what is available from more
sophisticated spectrum analyzers [1] and channel sounders [66]. In addition to
this low sampling resolution, we also observed infrequent occurances of missing
samples. Finally, various signal characteristics that are available through
spectrum analyzer hardware (e.g., phase and modulation properties) are not
available from the commodity WiFi hardware. Therefore, Airshark needed to
operate purely based on the limited energy samples available from the WiFi
cards, and maintain high detection accuracy and low false positives despite
these constraints.

Overview of Airshark: Airshark overcomes these challenges using several
mechansisms. It uses a dwell-sample-switch approach to collect samples across
the spectrum (§3.3). It operates using only energy samples from the WiFi
card to extract a diverse set of features (§3.3) that capture the spectral
and temporal properties of wireless signals. These features are robust to
changes in the wireless environment and are used by Airshark’s light-weight
decision tree classifiers to perform device detection in real-time (§3.3). We
systematically evaluate Airshark’s performance in a variety of scenarios, and
find its performance comparable to a state-of-the-art signal analyzer [3] that
employs custom hardware.

In this chapter, we make the following contributions:

• Characterizing prevalance of non-WiFi RF devices. To motivate the need for
systems such as Airshark, we first performed a detailed measurement
study to characterize the prevalence of non-WiFi RF devices in typical
environments — homes, o�ces, and various public spaces. This study was
conducted for more than 600 hours over several weeks across numerous
representative locations using signal analyzers [3] that establish the
ground truth.

• Design and implementation of Airshark to detect non-WiFi RF devices. Air-
shark extracts a unique set of features using the functionality provided by
a WiFi card, and accurately detects multiple RF devices (across multiple
models listed in Table 3.1) while maintaining a low false positive rate

57

R
F

D
ev

ic
e

C
at

eg
or

y
D

ev
ic

e
M

od
el

s(
se

tu
p)

A
ir

sh
ar

k’
sA

cc
ur

ac
y

(lo
w

R
SS

I—
hi

gh
R

SS
I)

H
ig

h
du

ty
,fi

xe
d

fre
qu

en
cy

de
vi

ce
s—

sp
ec

tra
ls

ig
na

tu
re

,d
ut

y,
ce

nt
er

fre
qu

en
cy

,b
an

dw
id

th
A

na
lo

g
Co

rd
le

ss
Ph

on
es

U
ni

de
n

EX
P4

54
0

Co
m

pa
ct

Co
rd

le
ss

Ph
on

e
(p

ho
ne

ca
ll)

97
.7

3%
—

10
0%

W
ire

le
ss

Vi
de

o
Ca

m
er

as
Py

ru
sE

le
ct

ro
ni

cs
Su

rv
ei

lla
nc

e
Ca

m
er

a
(v

id
eo

st
re

am
in

g)
92

.7
%

—
99

.8
2%

Fr
eq

ue
nc

y
ho

pp
er

s—
pu

lse
sig

na
tu

re
,t

im
in

g
sig

na
tu

re
,p

ul
se

sp
re

ad

Bl
ue

to
ot

h
de

vi
ce

s(
AC

L/
SC

O
)

Bl
ue

to
ot

h-
en

ab
le

d
de

vi
ce

s:
(i)

iP
ho

ne
,(

ii)
iP

od
to

uc
h,

91
.6

3%
—

99
.4

6%
(ii

i)
M

ic
ro

so
ft

no
te

bo
ok

m
ou

se
50

00
,

(iv
)J

ab
ra

bl
ue

to
ot

h
he

ad
se

t(
da

ta
tra

ns
fe

r/
au

di
o

st
re

am
in

g)
FH

SS
Co

rd
le

ss
Ba

se
/P

ho
ne

s
Pa

na
so

ni
c2

.4
K

X-
TG

23
43

Co
rd

le
ss

Ba
se

/P
ho

ne
s(

ph
on

e
ca

ll)
96

.4
7%

—
10

0%

W
ire

le
ss

A
ud

io
Tr

an
sm

itt
er

G
O

G
ro

ov
e

Pu
re

Pl
ay

2.
4

G
H

z
91

.2
3%

—
99

.3
7%

W
ire

le
ss

he
ad

ph
on

es
(a

ud
io

st
re

am
in

g)

W
ire

le
ss

G
am

e
Co

nt
ol

le
rs

(i)
M

ic
ro

so
ft

Xb
ox

,(
ii)

N
in

te
nd

o
W

ii,
91

.7
5%

—
99

%
(ii

i)
So

ny
Pl

ay
st

at
io

n
3

(g
am

in
g)

Br
oa

db
an

d
in

ter
fer

er
s—

tim
in

g
sig

na
tu

re
,s

we
ep

de
tec

tio
n

M
ic

ro
w

av
e

O
ve

ns
(r

es
id

en
tia

l)
(i)

W
hi

rlp
oo

lM
T4

11
0,

(ii
)D

ae
w

oo
KO

R-
63

0A
,

93
.1

6%
—

99
.5

6%
(ii

i)
Su

nb
ea

m
SB

M
75

00
W

(h
ea

tin
g

w
at

er
/f

oo
d)

Va
ria

bl
ed

ut
y,

fix
ed

fre
qu

en
cy

de
vi

ce
s—

sp
ec

tra
ls

ig
na

tu
re

,p
ul

se
sig

na
tu

re
Zi

gB
ee

D
ev

ic
es

Je
nn

ic
JN

51
21

/J
N

51
3x

ba
se

d
de

vi
ce

s(
bu

lk
da

ta
tra

ns
fe

r)
96

.2
3%

—
99

.1
2%

Ta
bl

e3
.1

:D
ev

ic
es

te
st

ed
w

ith
th

ec
ur

re
nt

im
pl

em
en

ta
tio

n
of

A
irs

ha
rk

.F
ea

tu
re

su
se

d
to

de
te

ct
th

ed
ev

ic
es

in
cl

ud
e:

Pu
lse

sig
na

tu
re

(d
ur

at
io

n,
ba

nd
w

id
th

,c
en

te
rf

re
qu

en
cy

),
Sp

ec
tra

ls
ig

na
tu

re
,T

im
in

g
sig

na
tu

re
,D

ut
y

cy
cl

e,
Pu

lse
sp

re
ad

an
d

de
vi

ce
sp

ec
ifi

cf
ea

tu
re

s(
e.

g.
,S

w
ee

p
de

te
ct

io
n

fo
rM

ic
ro

w
av

e
O

ve
ns

).
A

cc
ur

ac
y

te
st

sw
er

e
do

ne
in

pr
es

en
ce

of
m

ul
tip

le
ac

tiv
e

RF
de

vi
ce

sa
nd

RS
SI

va
lu

es
ra

ng
e

fr
om

-
80

dB
m

(lo
w

)t
o
-

30
dB

m
(h

ig
h)

.

58

(§5.7). Across multiple RF environments, and in the presence of multiple
RF devices operating simultaneously, average detection accuracy was
96% at moderate to high signal strengths (>-60 dBm). At low signal
strengths (-80 dBm), accuracy was 91%. Further, Airshark’s performance
is comparable to commercial signal analyzers (§3.4).

• Example uses of Airshark. Through a deployment in two production
WLANs, we demonstrate Airshark’s potential in monitoring the RF
activity, and understanding performance issues that arise due to non-
WiFi interference.

To the best of our knowledge, Airshark is the first system that provides
a generic, scalable framework to detect non-WiFi RF devices using only
commodity WiFi cards and enables non-WiFi interference detection in today’s
WLANs.

�.� �������������� ���������� �� ���-���� �� �������

In this section, we aim to characterize the prevalence and usage of non-WiFi RF
devices in real world networks. First, we describe our measurement equipment,
and data sets.

Hardware. We use AirMaestro RF signal analyzer [3] to determine the ground
truth about the prevalence of RF devices. This device uses a specialized
hardware (BSP2500 RF signal analyzer IC), which generates spectral samples
(FFTs) at a very high resolution (every 6 µs, with a resolution bandwidth of
156 kHz) and performs signal processing to detect and classify RF interferers
accurately.

— “Ground truth” validation. Before using AirMaestro to understand the
ground truth about the prevalence of non-WiFi devices, we benchmarked its
performance in terms of (i) device detection accuracy and (ii) false positives.
We activated di�erent combinations of RF devices (up to 8 devices, listed in
Table 3.1) by placing them at random locations and measuring the accuracy at

59

di�erent signal strengths (up to -100 dBm). Measurements were done during
late nights to avoid any external non-WiFi interference. Our results indicate
an overall detection accuracy of 98.7% with no false positives. The few cases
where AirMaestro failed to detect the devices occurred when the devices were
operating at very low signal strengths (6 -90 dBm).

Data sets. We collected the RF device usage measurements using the signal
analyzer at 21 locations for a total of 640 hours. We broadly categorize these
locations into three categories: (i) cafes (L1-L7): these included co�ee shops,
malls, book-stores (ii) enterprises (L8-L14): o�ces, university departments,
libraries and (iii) homes (L15-L21): these included apartments and independent
houses. Measurements were taken over a period of 5 weeks. At some locations,
we could collect data for more than 24 hours (e.g., enterprises, homes) but for
others we could collect measurements only during the day times (e.g., co�ee
shops, malls). We now summarize our observations from this data.

Non-WiFi devices are prevalent across locations and often appear with fairly
high signal strengths Figure 3.3 (top) shows the distribution of non-WiFi
device instances observed per hour in di�erent wireless environments. We
observe that device instances/hr. varied across locations, with some locations
showing very high device activity (e.g., a median of 22, 16 instances/hr. at
locations L10 (an o�ce), L16 (dormitory) respectively). Figure 3.3 (bottom)
shows the distribution of non-WiFi device RSSI at these locations1. We observe
that the median RSSI varied from -80 to -35 dBm. Further, for around 62%
locations, we observe that 75th percentile of RSSI was greater than -60 dBm
(shown using a gray line) suggesting strong non-WiFi interference.

Popularity of devices varied with locations, although few devices are pop-
ular across many locations Figure 3.4 shows the distribution of non-WiFi
instances at di�erent locations. Microwaves, FHSS cordless phones, Bluetooth

1Observed RSSI is dependent on the exact location where the measurement node was placed.
While we tried to be unbiased, node placement in reality was influenced by few factors like
availability of power connection.

60

R
S

S
I

(d
B

m
)

Location

-100

-80

-60

-40

-20

 0

 0 5 10 15 20

In
st

a
n

ce
s/

h
r.

Location

(Cafes) (Enterprises) (Homes)

 0

 10

 20

 30

 0 5 10 15 20

Figure 3.3: Distribution of (i) non-WiFi device instances/hour at di�erent
locations (top), and (ii) RSSI of non-WiFi devices at these locations (bottom).
Min, Max, 25th, 50th and 75th percentiles are shown.

devices and game controllers were the most popular. However, some other
devices appeared frequently at specific locations e.g., video cameras accounted
for 29% of instances at location L4 (cafe).

Session durations for non-WiFi devices varied from a few seconds to over
100 minutes Figure 3.5 (left) shows the CDF of the session times for each class
of non-WiFi devices. Many devices appear in our traces for a short duration
(6 2 minutes). These included (i) devices like microwaves that are activated
for short durations and (ii) device instances with low signal strengths (6 -75
dBm) that appeared intermittently at the locations where the signal analyzer
was placed. However, for 25% of the cases, the devices were active for more
than 5 minutes and in some traces, devices like game controllers (e.g., Xbox)
were active for durations of up to 1.8 hours.

61

0

25

50

75

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

%
 I
n
st

a
n
ce

s

Locations

Zigbee
Videocam

Mouse
Xbox

Unclassified
Jammer

Microwave
Inv. Microwave

FHSS phone
DSS phone

Bluetooth
Analog phone

Figure 3.4: Distribution of non-WiFi device instances at various locations.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100

C
D

F

Time (in minutes)

Bluetooth
FHSS Phone

Xbox
Mouse

 0

 0.2

 0.4

 0.6

 0.8

 1

-90 -80 -70 -60 -50 -40 -30 -20 -10

C
D

F

RSSI (dBm)

Analog Phone
Microwave

VideoCam
DSSS Phone

Figure 3.5: Distribution of (a) Session durations of the non-WiFi device instances
(X-axis in log-scale) and (b) RSSIs of the non-WiFi device instances aggregated
across all locations.

Some of the devices operate at high signal strengths indicating potential
interference Microwave ovens, video cameras, and analog phones were the
most dominant in terms of RSSI (Figure 3.5 (right)). For e.g., RSSI was > -55
dBm for more than 35% of the observed microwave oven instances, indicating

62

 0

 1

 2

 3

12 AM 4 AM 8 AM 12 PM 4 PM 8 PM 12 AM

D
e

vi
ce

s/
m

in
.

Time of the day

(Home, L18)

 0

 1

 2

12 AM 4 AM 8 AM 12 PM 4 PM 8 PM 12 AM

D
e

vi
ce

s/
m

in
.

Time of the day

(Enterprise, L14)

 0
 0.25

 0.5
 0.75

 1

 10 100

C
D

F

Quiet time (min)

(Enterprises) (Homes)

L12
L13
L14

L18
L19
L21

Figure 3.6: The plot shows (a) CDF of quiet times at locations where 48 hours
of trace data was collected (enterprise and home locations). Time-series of
non-WiFi device instances per minute at (b) an enterprise (location L14) and
(c) and home (location L18) for a 24 hour period shows increased quiet times
during late nights.

potential interference to nearby WiFi links. Wireless game controllers and
Bluetooth devices on the other hand, mostly occurred at low to moderate RSSI
of -80 to -65 dBm.

More than 50% of the periods with no non-WiFi device activity were less
than 10 minutes We define a quiet period as a duration in which no non-WiFi
devices were active. Figure 3.6 (top) shows the CDF of the quiet periods for
locations (homes, enterprises) at which we collected data for 48 hours. The
figure shows that non-WiFi devices appeared quite frequently—more than 50%

63

 0

 20

 40

 60

 80

 100

1 3 5 7 9 111315171921

%
 T

im
e

busy quiet

 0

 20

 40

 60

 80

 100

1 3 5 7 9 11 13 15 17 19 21

%
 A

ct
iv

e
 p

e
ri
o

d

>=3 2 1

Figure 3.7: Distribution of (a) quiet and busy periods (b) simultaneously-active
devices during the busy periods across di�erent locations

of the quiet periods were less than 10 minutes, and maximum quiet period
in our trace was 8 hours at L12 (o�ce). Figure 3.6 (middle, bottom) shows
a 24 hour time-series of the number of active non-WiFi devices/min. at L14
(enterprise) and L18 (home) respectively. We observe that the longer quiet
periods occurred during late nights to early mornings (3 am to 8 am), and most
of the non-WiFi device activity was during the daytime, when WiFi utilization
is also typically significant.

At most locations, only 1 or 2 non-WiFi devices were active simultaneously
for more than 95% of the busy times Figure 3.7 (left) shows that the aggregate
quiet times (percentage time with no non-WiFi activity) vary at di�erent
locations. In many locations, the aggregate quiet times were around 70-80%
i.e., non-WiFi devices were visible for 20-30% of the time. Quiet times were
much lesser for cafes (e.g., only 3% at L4) as the traces did not include the
measurements during the night times and there was frequent microwave oven
and cordless phone activity when we collected the traces (during the day time).
Figure 3.7 (right) shows the distribution of the number of active non-WiFi
devices per minute, during the busy times (periods with non-WiFi activity). We
find that only a single device was active for 35% (L2, cafe) to 99% (L20, home)

64

of the time, and more than 2 devices were active simultaneously for at most
20% of the time (L9, o�ce).

�.� ��������: ������ ���������

Prior work has developed device detection mechanisms using commercial signal
analyzers [3], channel sounders [66] or software radios [98] which o�er fine-
grained, very high resolution signal samples, typically collected using a wide-
band radio. We focus on designing such a system using commodity WiFi cards.
WiFi cards are capable of providing similar spectrum data, albeit with limited
signal information, and 2 orders of magnitude lesser resolution compared to
signal analyzers. Traditionally, WiFi cards have not exposed this functionality,
but emerging commodity WiFi cards provide an API through which we can
access spectral samples—information about the signal power received in each
of the sub-carriers of an 802.11 channel, which opens up the possibility of
detecting non-WiFi devices. Designing such a detection system using WiFi
cards, however, imposes several challenges as discussed below.

Why is it hard to detect devices using WiFi cards?

- Limited spectrum view. Unlike sophisticated signal analyzers [1, 66] that can
sample a wideband of 80-100 MHz (e.g., the entire 2.4 GHz band), current
WiFi cards are designed to operate in a narrowband (e.g., 20 MHz).

- Limited signal information. Current WiFi cards provide limited signal
information (e.g., the received power per sub-carrier) compared to software
radios that provide raw signal samples. Thus traditional device detection
approaches like cyclostationary analysis [66], phase analysis or use of
protocol specific decoders [98] are not feasible.

- Reduced sampling resolution. WiFi cards have a resolution bandwidth of
312.5 kHz (equal to sub-carrier spacing) compared to signal analyzers [1]
that o�er resolution bandwidths as low as 1 kHz. Further, WiFi cards
also have a lower sampling rate—our current implementation uses ⇠2.5k
samples/sec, as opposed to that used by commercial signal analyzers [3]

65

S
p

e
c
tr

a
l

s
a

m
p

le
s

P
u

ls
e

D
e

te
c
to

rn
e

w
 p

u
ls

e
s

P
u

ls
e

 M
a

tc
h

in
g

S
ta

ts

e
x
te

n
d

a
d

d
 n

e
w

 p
u

ls
e

te
rm

in
a

te

(a
v
g

.
d

u
ty

,
a

v
g

.
p

o
w

e
r,

 .
.)

C
o

m
p

le
te

d

p
u

ls
e

s

D
u

ty

A
n
a
lo

g
 P

h
o
n
e
 A

n
a
ly

z
e
r

a
c
ti
v
e

 p
u

ls
e

s

S
p

e
c
tr

a
l

s
ig

n
a

tu
re

S
w

e
e

p

a
n

a
ly

z
e

r

T
im

in
g

s
ig

n
a

tu
re

F
H

S
S

 P
h
o
n
e
 A

n
a
ly

z
e
r

S
u

b
-b

a
n

d

c
h

a
n

g
e

W
iF

i
C

a
rd

(F
re

q
u
e
n
c
y
 h

o
p
p
in

g
 d

e
v
ic

e
 a

n
a
ly

z
e
rs

)

M
ic

ro
w

a
v
e
 A

n
a
ly

z
e
r

P
u

ls
e

s
ig

n
a

tu
re

D
e
c
is

io
n
 t
re

e
-b

a
s
e
d
 d

e
v
ic

e
 d

e
te

c
ti
o
n

C
F

B
W

Duration

P
u

ls
e

s
p

re
a

d

(F
ix

e
d
 f
re

q
u
e
n
c
y
 d

e
v
ic

e
 a

n
a
ly

z
e
rs

)

G
e
n
e
ri
c
 F

e
a
tu

re
 E

x
tr

a
c
ti
o
n

T
a

g
g

e
d

 p
u

ls
e

s
,

s
ta

ti
s
ti
c
s

D
e

c
is

io
n

T
re

e

B
lu

e
to

o
th

 A
n
a
ly

z
e
r

3

4
2

P
u
ls

e
 d

e
te

c
ti
o
n
,
S

ta
ts

 c
o
lle

c
ti
o
n

1
S

p
e
c
tr

a
l

s
a
m

p
lin

g

(S
ec

ti
o

n
 3

.1
)

(S
ec

ti
o

n
 3

.2
)

(S
ec

ti
o

n
 3

.3
) (S

ec
ti

o
n

 3
.4

)

Fi
gu

re
3.

8:
(a

)I
llu

st
ra

tio
n

of
A

irs
ha

rk
’s

de
te

ct
io

n
pi

pe
lin

e.
Sp

ec
tr

al
sa

m
pl

es
fr

om
th

e
W

iF
ic

ar
d

ar
e

ge
ne

ra
te

d
us

in
g

a
sc

an
ni

ng
pr

oc
ed

ur
e(

§3
.3

).
Th

es
es

am
pl

es
ar

ep
ro

ce
ss

ed
to

de
te

ct
sig

na
lp

ul
se

s,
an

d
co

lle
ct

so
m

ea
gg

re
ga

te
st

at
ist

ic
sb

as
ed

on
th

e
re

ce
iv

ed
po

w
er

va
lu

es
(§

3.
3)

.I
n

th
e

ne
xt

st
ag

e,
va

rio
us

fe
at

ur
es

ca
pt

ur
in

g
th

e
sp

ec
tra

la
nd

te
m

po
ra

lp
ro

pe
rt

ie
so

ft
he

si
gn

al
sa

re
ex

tr
ac

te
d

(§
3.

3)
,a

nd
ar

e
us

ed
by

di
�e

re
nt

de
vi

ce
an

al
yz

er
st

ha
te

m
pl

oy
de

ci
si

on
tr

ee
m

od
el

s(
§3

.3
)t

ra
in

ed
to

de
te

ct
th

ei
rt

ar
ge

tR
F

de
vi

ce
s.

66

(160k samples/sec) or prior work [98] employing software radios (8 million
samples/sec).

- Other challenges. Coupled with the above constraints, the presence of regular
WiFi packet transmissions in the spectrum further increase the “noise” in
the spectral samples, making it more challenging to detect devices.

Overview. We wish to detect the presence of multiple (simultaneously
operating) non-WiFi devices in real-time. The above challenges imply that
Airshark is constrained to use the limited signal information (spectral samples)
provided by a WiFi card and must employ light-weight detection mechanisms
that are robust to missing samples. We now present an overview of Airshark’s
device detection pipeline. Figure 3.8 illustrates the four steps listed below.

1. Spectral samples from the WiFi card are generated using a scanning
procedure (§3.3). This procedure divides the entire spectrum into a number
of sub-bands and generates spectral samples for each sub-band. Samples
that comprise only WiFi transmissions are “purged” and remaining samples
are passed to the next stage.

2. Next, spectral samples are processed to detect signal pulses—time-frequency
blocks that contain potential signals of interest, and collect some aggregate
statistics based on received power values (§3.3).

3. In this stage, we extract a set of light-weight and unique features from the
pulses and statistics (§3.3)—derived using only received power values—
that capture the spectral and temporal properties of signals. Example
features include: spectral signatures that characterize the shape of the signal’s
power distribution across its frequency band, inter-pulse timing signatures
that measure the time di�erence between the pulses, and device specific
features like sweep detection (used to detect microwave ovens).

4. In the final stage of the pipeline, the above features are used by di�erent
device analyzers that employ decision tree models (§3.3) trained to detect
their target device.

We now explain the above detection procedure in detail.

67

Delay minimum 25th pc. median 75th pc maximum
Inter-sample time 116µs 116µs 122µs 147µs 4.94 ms
Sub-band switching 12.2 ms 14.5 ms 19.7 ms 31 ms 163 ms

Table 3.2: Time between valid consecutive spectral samples and time taken to
switch sub-bands in our current implementation.

Spectral Sampling

We start by explaining the details of sampling procedure employed in our
current implementation.

Spectral samples. We implement Airshark using an Atheros AR9280 AGN
wireless card. We use the card in 802.11n 20 MHz HT mode, where a 20 MHz
channel is divided into 64 sub-carriers, spaced 312.5 KHz apart and the signal
data is transmitted on 56 of these sub-carriers. Each spectral sample (FFT)
generated by the wireless card comprises the power received in 56 sub-carriers
(FFT bins) and corresponds to a 17.5 MHz (56⇥0.3125 MHz) chunk of spectrum,
which we refer to as a sub-band. Additionally, the wireless card also provides
the timestamp t (in µs) at which the sample was taken, and the noise floor at
that instant.

Purging WiFi spectral samples. We e�ciently filter the spectral samples
that comprise only WiFi transmissions as follows: all the samples for which
Airshark’s radio is able to successfully decode a WiFi packet are marked as
potential candidates for purging. Airshark then reports a spectral sample for
further processing only if it detects non Wi-Fi energy in that sample. To be more
precise, if the radio is receiving a packet, Airshark will not report the sample
unless the interference signal is stronger than the 802.11 signal being received.
One downside to this approach is that Airshark will also report spectral samples
corresponding to weak 802.11 signals that fail carrier detection. However, as we
show in §3.3, this is not a problem as Airshark can filter out the samples relevant
to non-WiFi transmissions by employing device detection mechanisms. We

68

term the samples reported by Airshark after this purging step as valid spectral
samples.

Scanning procedure. Airshark divides the entire spectrum (e.g., 80 MHz)
into several (possibly overlapping) sub-bands, and samples one sub-band at a
time. Our current implementation uses 7 sub-bands with center frequencies
corresponding to the WiFi channels 1, 3, 6, 9, 11, 13 and 14. Table 3.2 shows (i)
inter-sample time: the time between two consecutive valid spectral samples
(within a sub-band) and (ii) time taken to switch the sub-bands. Increased gap
in the inter-sample time for a few samples (> 150µs) is due to the nature of the
wireless environment—in the absence of strong non-WiFi devices transmissions,
intermittent interference from WiFi transmissions causes gaps due to purged
spectral samples. Sampling gaps are also caused when switching sub-bands
(⇠ 20 ms on an average, and 163 ms in the worst case).

To amoritize the cost of switching sub-bands, Airshark employs a dwell-
sample-switch approach to sampling: Airshark dwells for 100 ms in each sub-
band, captures the spectral samples and then switches to the next sub-band. As
we show later, in spite of the increased gap for few samples, we find the sampling
resolution of current WiFi cards to be adequate in detecting devices (across
di�erent wireless environments) with a reasonable accuracy (§5.7). In §5.7, we
demonstrate the adversarial case where strong WiFi interference coupled with
weak non-WiFi signal transmissions can a�ect Airshark’s detection capabilities.

Extracting signal data

We now explain the next stage in the detection pipeline that operates on the
spectral samples to generate signal pulses, along with some aggregate statistics.

“Pulse” Detection. Each spectral sample is processed to identify the signal
“peaks”. Several complex mechanisms have been proposed for peak detec-
tion [44, 62]. To keep our implementation e�cient, we use a simple and a
fairly standard algorithm [49, 56]—peaks are identified by searching for “local
maximas” that are above a minimum energy threshold �s. For each peak, the

69

�s

kp3

p1 p2

P
o
w

e
r

kp4

spectral sample

p4

add

peaks

t2

Frequency

t0

t1

new

pulses

Frequency

T
im

e

p3

active pulses

match

terminate

t2

extend

Figure 3.9: Illustration of the pulse detection and matching procedure. Pulse
detector processes the spectral sample at time t2 to output two new pulses p3
and p4. New pulse p3 matches with the active pulse p1, and results in extending
p1. Active pulse p2 is terminated as there is no matching new pulse, and new
pulse p4 is added to the active pulse list.

pulse detector generates a pulse as a set of contiguous FFT bins that surround
this peak. A pulse corresponds to a signal of interest, and its start and end
frequencies are computed as explained below.

— frequency and bandwidth estimation: Let kp denote the peak bin and p(kp)

denote the power received in this bin. We first find the set of contiguous FFT
bins [k 0

s, k 0
e] such that k 0

s 6 kp 6 k 0
e and power received in each bin is (i)

above the energy threshold, �s and (ii) within �B of the peak power p(kp) i.e.,
p(k) > �s

V
p(kp)-p(k) < �B8k 2 [k 0

s, k 0
e]. The center frequency (CF) and the

bandwidth (BW) of a pulse corresponding to this peak bin can be characterized
by considering its mean localization and dispersion in the frequency domain:

kc =
1X

k

p(k)

X

k

k·p(k), k 0
s 6 k 6 k 0

e

B = 2
vuuut

1X

k

p(k)

X

k

(k- kc)
2·p(k), k 0

s 6 k 6 k 0
e

The center frequency bin kc is computed as the center point of the power
distribution, and the frequency spread around this center point is defined as

70

-105

-90

-75

-60

-45

-30

 0 10 20 30 40 50 60

S
ig

n
a

l s
tr

e
n

g
th

 (
d

B
m

)

Frequency bins (0-55)

1m
2m
3m
5m

10m
15m
20m

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

 0 10 20 30 40 50 60
N

o
rm

a
liz

e
d

 P
o

w
e

r
Frequency bins (0-55)

1m
2m
3m
5m

10m
15m
20m

Figure 3.10: (a) Distribution of average power vs. frequency for an analog
cordless phone at di�erent distances. (b) Spectral signatures for the analog
cordless phone are not a�ected for RSSI values of > -80 dBm.

the bandwidth B of the pulse. For each peak, we restrict the bandwidth of
interest to comprise bins whose power values are more than �s and are within
�B of the peak power p(kp). We use this mechanism as it is simple to compute
and it provides reasonable estimates as we show in §5.7. Based on the computed
bandwidth, the start bin (ks) and the end bin (ke) are determined. The pulse
detector can potentially output multiple pulses for a spectral sample. Each
pulse in a spectral sample observed at time t can be represented using the tuple
[t, ks, kc, ke, [p(ks) …p(ke)]]

Pulse Matching. Airshark maintains a list of active pulses for the current sub-
band. This active pulse list is empty at the start of the sub-band, and the first
set of pulses (obtained after processing a spectral sample in the sub-band) are
added to this list as active pulses. For the rest of the samples in the sub-band, a
pulse matching procedure is employed: the pulse detector outputs a set of new
pulses after processing the sample. These new pulses are compared against the
list of active pulses to determine a match. In our current implementation, we
use a strict criteria to determine a match between a new pulse and an active

71

pulse: the CFs and BWs of the new pulse and the active pulse must be equal,
and their peak power values must be within 3 dB (to accommodate signal
strength variations). Once a match is determined, the new pulse is merged
with the active pulse to extend it i.e., the duration of the active pulse is increased
to accommodate this new pulse, and the power values of the active pulse are
updated by taking a weighted average of power values of the new and the active
pulse.

After the pulse matching procedure, any left over new pulses in the current
spectral sample are added to the active pulse list. The active pulses that did not
find a matching new pulse in the current sample are terminated. Active pulses
are also terminated if Airshark encounters more than one missing spectral
sample (i.e., inter-sample time > 150 µs). Once an active pulse is terminated,
it is moved to the current sub-band’s list of completed pulses. It is possible that
some of the active pulses are prematurely terminated due to the strict match
and termination criteria. However, doing so helps Airshark maintain a low
false positive rate as it only operates on well-formed pulses that satisfy this
strict criteria (§5.7). Figure 3.9 illustrates this pulse detection procedure.

Stats Module. The stats module operates independently of the above pulse
logic. It processes all the spectral samples of a sub-band to generate the
following statistics: (i) average power: this is the average power in each FFT
bin for the duration of the sub-band, (ii) average duty: this is the average duty
cycle for each bin in the sub-band. The duty cycle of an FFT bin k is computed as
1 if p(k)>�s, otherwise it is 0. (iii) high duty zones: After processing a sub-band,
a mechanism similar to peak detection, followed by CF and BW estimation
procedure is applied on the “average power” statistic to identify the high duty
zones in the sub-band. These are used to quickly detect the presence of high
duty devices.

Before switching to the next sub-band, all the active pulses for the current
sub-band are terminated and pushed to the list of the sub-band’s completed
pulses. The list of completed pulses along with the aggregate statistics are then
passed on to the next stage of the pipeline to perform feature extraction.

72

Feature Extraction

Using the completed pulses list and statistics, we extract a set of generic features
that capture the spectral and temporal properties of di�erent non-WiFi device
transmissions. These features—frequency, bandwidth, spectral signature, duty
cycle, pulse signature, inter-pulse timing signature, pulse spread and device
specific features like sweep detection—form the building blocks of Airshark’s
decision tree-based device detection mechanisms2. We now explain these
features.

(F1) Frequency and Bandwidth. Most RF devices operate using pre-defined
center frequencies, and their waveforms occupy a specific bandwidth. For
e.g, a ZigBee device operates on one of the pre-defined 16 channels [100], and
occupies a bandwidth of 2 MHz. The center frequency and bandwidth of the
pulses (and sub-band’s high duty zones) are used as features in Airshark’s
decision tree models.

(F2) Spectral signatures. Many RF devices also exhibit certain power versus
frequency characteristics. We capture this using a spectral signature: given a set
of frequency bins [ks. . .ke] and corresponding power values [p(ks). . .p(ke)],
if we treat the frequency bins as a set of orthogonal axes, we can construct a
vector �!s = p(ks)k̂s + . . . + p(ke)k̂e that represents the power received in each
of the bins. We then normalize this vector to derive a unit vector representing
the spectral signature: ŝ =

�!
s

|s| . Given a reference spectral signature ŝ

r

and a
measured spectral signature ŝ

m

, we compute the similarity between the spectral
signatures as the angular di�erence (✓): cos-1(ŝ

r

· ŝ

m

). The angular di�erence
captures the degree of alignment between the vectors, and is close to 0� when
the relative composition of the vectors is similar.

Spectral signatures can be computed on the average power values of the
pulses (e.g., ZigBee pulse) or on the high duty zones (e.g., for high duty
devices like analog phones) to aid in device detection. Figure 3.10 shows

2We selected these features with the help of attribute selection algorithm available in
WEKA [11], an o�-the-shelf machine learning classifier.

73

Protocol/Device Bandwidth Duration Frequency usage
WDCT Cordless Phone 0.892 KHz 700 µs FHSS, 90 channels
Bluetooth 1 MHz 366 µs - 3 ms FHSS, 79 channels
ZigBee 2 MHz < 5 ms Static, 16 channels
Game controller 500 KHz 235 µs FHSS, 40 channels

Table 3.3: Pulse signatures for di�erent RF devices.

the power distribution of an analog cordless phone at di�erent distances, and
the corresponding spectral signatures computed at each distance. The figure
shows that normalization aids in making the signatures robust to the changes
in the signal strengths of the RF devices. However, at very low signal strengths
(6 -90 dBm), the spectral signatures tend to deviate and result in an increased
theta, leading to false negatives (§5.7).

(F3) Duty cycle. The duty cycle D of a device is the fraction of time the device
spends in “active” state. This can be used to identify high duty devices, e.g.,
analog phones and wireless video cameras have D=1, or identify devices with
characteristic duty cycles e.g., microwave ovens have D=0.5. In reality, due
to the presence of multiple devices, it is possible for the duty cycle of the
bandwidth (FFT bins) used by a device to be more than its expected duty cycle.
We therefore use the notion of minimum duty cycleDmin for devices (Dmin=0.5
for a microwave oven) as one of the features.

(F4) Pulse signatures. Along with CF and BW, the transmission durations of
many devices conform to their protocol standards. For e.g., in Bluetooth, the
duration of a transmission slot is 625 µs, out of which 366 µs is spent in active
transmission. Similarly, WDCT cordless phones (FHSS phones) have a pulse
duration of 700 µs. Table 3.3 shows these properties (frequency, bandwidth,
and duration of the pulses) for di�erent devices. Airshark combines these three
properties together to define pulse signatures for devices that communicate
using pulses (e.g., ZigBee, Bluetooth) and uses them as features in the detection

74

 0

 20

 40

 60

 80

 100

5ms 16.66ms

C
D

F

Time

825us625us 10ms

Bluetooth SCO
FHSS cordless phone

FHSS cordless base

Xbox
Microwave

Figure 3.11: Inter-pulse timing signature for di�erent devices.

process.

(F5) Inter-pulse timing signatures. Timing between the transmissions of
many devices also exhibit certain properties. In Bluetooth SCO, for example,
examining the spectrum will reveal sets of two consecutive pulses that satisfy
the Bluetooth pulse signature (Table 3.3) and are separated by a time di�erence
of 625 µs. WDCT cordless phones and game controllers (e.g., Wii) exhibit
similar properties with time di�erence between consecutive pulses (occuring at
the same center frequency) in a set being 5 ms and 825 µs respectively. Similarly,
microwaves exhibit an ON-OFF cycle with a period of 16.6 ms. Figure 3.11
illustrates these timing properties.

Since Airshark can only sample a particular sub-band at a time, it cannot
capture all the pulses of a device. This is especially true for frequency hopping
devices. Due to the nature of sampling, we cannot expect every captured pulse
to exhibit the above timing property. Airshark’s device analyzers therefore
use a relaxed constraint—number of pulse sets that satisfy a particular timing
property is used as one of the features in the decision tree models (§3.3).

(F6) Pulse spread. Airshark accumulates the pulses for a number of sub-bands,
and extracts features from pulses belonging to a particular pulse signature to
detect the presence of frequency hopping devices. Together, these features
represent the pulse spread across di�erent sub-bands.

75

0

0.0025

0.005

0.0075

0.01

0.0125

 0 50 100 150 200 250 300 350 400

P
D

F

Bin number

AudioTx
FHSS Phone

Figure 3.12: Pulse distribution of FHSS cordless phone and an audio transmitter
as captured by Airshark.

1. Pulses-per-band (mean and variance). We use the average number of pulses
per sub-band, and the corresponding variance as one of the measures to
characterize the pulse spread. For frequency hoppers, we can expect the
average number of pulses in each sub-band to be higher (and the variance
lower) compared to fixed frequency devices.

2. Pulse distribution. Pulses of many frequency hopping devices tend
to conform to a particular distribution. For example, FHSS cordless phone
pulses are spread uniformly across the entire 80 MHz band, whereas, the
pulse distribution for other frequency hoppers like audio transmitters may
tend to be concentrated on certain frequencies of sub-bands, as shown in
Figure 3.12. The X-axis shows the bin number b for each of the seven sub-
bands (bmax = 56⇥ 7 = 392), and Y-axis shows the fraction of the pulses that
fall into each bin.3

Airshark checks whether the distribution of pulses across the sub-bands
conforms to an expected pulse distribution using Normalized Kullback-Leibler
Divergence (NKLD)[92], a well known metric in information theory. NKLD
is simple to compute and can be used to quantify the ‘distance’ or the relative
entropy between two probability distributions. NKLD is zero when the two
distributions are identical, and a higher value of NKLD implies increased

3Instead of measuring the actual pulse distribution over the 80 MHz band, we stitch the
sub-bands together (ignoring the overlaps) and measuring the pulse distribution over the stitched
sub-bands.

76

distance between the two distributions. The definition of NKLD is assymetric,
therefore we use a symmetric version of NKLD [92] to compare two distributions.
Let r(b) be the reference pulse distribution over all the bins (b 2 B = [0,bmax]),
computed over a large period of time. Let m(b) be the measured pulse
distribution over a smaller time period tm. The symmetric NKLD for two
distributions r(b) and m(b) can be defined as:

NKLD(m(b), r(b)) = 1
2

⇣D(m(b)kr(b))
H(m(b))

+
D(r(b)km(b))

H(r(b))

⌘

where, D(m(b)kr(b)) quantifies the divergence and is computed as
P

b2Bm(b)
���log m(b)

r(b)

���, and H(m(b)) is the entropy of the random variable b

with distribution m(b) i.e., H(m(b)) = -
P

b2Bm(b) log2 m(b).
While Airshark can measure the pulse distribution m(b) over a large time

scale, and check if it conforms to r(b), this will increase the time to detect the
device. This leads to the question, “what is the minimum time scale tm at
which the pulse distribution can be measured?" We chose this time scale by
empirically measuring how the NKLD values converge with the increase in
the number of samples under di�erent conditions. For the devices that we
tested, we observed around 15000 samples (around 6 scans of the entire 80 MHz
band, amounting to 6-7 seconds) was su�cient. We show how the number of
samples a�ect the NKLD values in §3.4. We note that not all devices conform
to a particular pulse distribution e.g., in our experiments, we found variable
pulse distributions for Bluetooth as it employs adaptive hopping mechanisms.

(F7) Device specific features. Detection accuracy can be improved by using
features unique to the target device. We illustrate this using a feature specific
to microwave ovens.
— Sweep detector. The heating source in a residential microwave oven is based
on a single magnetron tube that generates high power electromagnetic waves
whenever the input voltage is above some threshold. This results in an ON-
OFF pattern, typically periodic with a frequency of 60 Hz (frequency of the
AC supply line). Although there might be di�erences between the emissions

77

Frequency sweep

 0 10 20 30 40 50

Frequency bins (CF: bin 28, 2452 MHz)

 0

 8

 16

 24

 32

 40
T

im
e
 (

m
s)

-140

-120

-100

-80

-60

-40

-20

si
g
n
a
l s

tr
e
n
g
th

 (
d
B

m
)

Figure 3.13: Spectral samples from Airshark capturing the activity of a
residential microwave. The plot shows (i) the ON-OFF cycle for is around
16.6 ms and (ii) “frequency sweeps” during the ON periods.

from ovens of di�erent manufacturers, the peak operational power is mostly
around 2.45-2.47 GHz and during the ON periods, the radiated signal exhibits
a frequency sweep of around 4-6 MHz [81, 150].

Figure 3.13 shows the resulting 16.66 ms periodic ON-OFF pattern and the
frequency sweeps during the ON periods of a microwave oven as captured by
Airshark. In the current prototype of Airshark, the microwave oven analyzer
includes sweep detection, along with timing signature analysis. We tested 6
microwaves (from di�erent manufacturers), and Airshark was able to detect all
of them using these features.

Device Detection

Airshark uses decision tree [122] based classifiers in order to detect the presence
of RF devices. A decision tree is a mapping from observations about an item
(feature set) to conclusions about its target value (class). It employs a supervised
learning model where a small set of labeled data, referred to as training data,
is first used to build the tree and is later used to classify unlabeled data. In
Airshark, we use the popular C4.5 algorithm [122] to construct the decision

78

trees. For further details about mechanisms to build decision trees and the
classification process, we refer the readers to [122].

Airshark employs a separate analyzer for each class of devices. These
device analyzers operate on a subset of features described previously, and
make use of decision tree classifiers trained to detect their corresponding RF
devices. The advantages of using per-device classifiers are three-fold: (i) each
classifier can use a separate feature subset, (ii) classifiers can operate at di�erent
time granularities e.g., fixed frequency device analyzers (e.g., analog phone)
can carry out the classification when Airshark finishes processing a sub-band,
whereas for frequency hopping device analyzers like (e.g., Bluetooth, game
controllers) the classification decision can only take place after enough samples
have been processed (§3.3), (iii) classification process is more e�cient when
multiple devices are simultaneously active—each classifier outputs either label
1 (indicating the presence of the device), or label 0 (indicating the absence of
the device). The alternative approach of using a single classifier is cumbersome
as it requires training the classifier for all possible device combinations (each
with a separate label).

Training. Before Airshark can identify a new RF device, its features have to be
recorded for training. To do this, features relevant to this device are identified,
and then extracted from spectral samples for the cases when the device is active
in isolation (label 1), and when the device is inactive (label 0). For example,
when adding the analog phone analyzer, we collected the spectral samples
when the phone was activated in isolation and when the phone was inactive.
We then instantiated analog phone’s device analyzer to extract these features:
bandwidth, spectral signature and duty cycle (measured from the recorded
spectral samples) and the list of possible CFs the phone can operate on. It is
worth pointing out that identifying the relevant feature set for a device and
training the corresponding device analyzer is a one time overhead before adding
a new RF device to Airshark. Table 3.1 lists the feature set employed by device
analyzers in our current implementation.

79

Classification. We now summarize Airshark’s detection pipeline. Each sample
is processed by the first stage of the pipeline, and results in updating the
completed pulse list and aggregate statistics. Device analyzers are invoked
when Airshark finishes processing a sub-band:

1. Each device analyzer operates on the completed pulses and aggregate
statistics, to derive its features. The features may include: CF, BW, angular
di�erence (corresponding to its spectral signature), duty cycle, number and
the spread of the pulses satisfying its pulse signature and timing signature.

2. The device analyzer’s decision tree is invoked to output either label 1 or 0.
3. In case the decision tree outputs label 1, Airshark invokes a module that

tags the selected pulses (satisfying the pulse signature and timing signature)
as “owned" by this RF device.

An additional check is performed for frequency hopping device analyzers:
if there are not enough accumulated samples to perform the classification, the
classification decision is deferred to the next sub-band.

Dealing with multiple RF devices and overlapping signals. When multiple
RF devices are simultaneously active, the spectrum may be occupied by a large
number of transmissions (signal pulses). If the transmissions from multiple
devices do not overlap in time or in frequency (either because of the diversity
in the device transmission times, or because the devices operate in a non-
overlapping spectrum bands), Airshark’s device analyzers can proceed as is.
Further, for certain combinations of devices, transmissions may overlap in
both time and frequency, but not always. For example, this is the case when
frequency hopping devices and fixed-frequency, low duty devices are present.
In our benchmarks for these combinations, Airshark could always find enough
pulses that do not overlap, and therefore was able to correctly detect the devices.

Transmissions from multiple devices that always overlap in time and
frequency, however, can decrease the detection accuracy if the above techniques
are used as is. For example, if the transmissions from a fixed-frequency,
always-on device (e.g., analog phone) overlap in frequency with another fixed-
frequency device (e.g., ZigBee device), features like spectral signatures will

80

not perform well. This is because overlapping signals change the “shape”
of the power distribution and increase the angular di�erence as shown in
Figure 3.14(a). One approach to resolve such overlaps, is to use cyclostationary
analysis [66] on raw signal samples. Such rich signal information (very high
resolution, raw signal samples), however, is not available through WiFi cards.
We extend the basic approach used in Airshark to handle these cases as follows:
device analyzers first identify the potential peaks that match their CFs. For each
peak, instead of a complete match on the signal’s bandwidth BW, a partial
match of the spectral signatures is performed. The bandwidth BWpar for
the partial match is decided by the bandwidth detection algorithm, and is
required to be above a minimum bandwidth BWmin in order to control the
false positives (i.e., BWmin 6 BWpar 6 BW). In our benchmarks, setting BWmin

to 0.6⇥BW improved the accuracy without increasing the false positives (§5.7).
Figure 3.14(b) shows the reduction in angular di�erence when using a partial
match.

Alternative classifiers. We also built another classifier based on support vector
machines (SVM) [7]. In our experiments, we found that in most cases, Airshark’s
SVM-based and decision tree based classifiers had similar detection accuracies.
In some scenarios involving multiple devices, SVM-based classifier performed
slightly better (§3.4). However, we elected to use a decision tree based classifier,
as it has very low memory and processing requirements, thus making it feasible
to embed non-WiFi device detection functionality in commodity wireless APs
and clients.

�.� ������������ �������

In this section, we evaluate Airshark’s performance under a variety of scenarios,
and present real-world applications of Airshark through a small scale deploy-
ment. We start by presenting the details of our implementation and testbed set
up, followed by the metrics used for evaluation.

81

-100

-90

-80

-70

-60

-50

0 27 55

S
ig

n
a
l s

tr
e
n
g
th

 (
d
B

m
)

FFT bins (0-55)

partial analog phone
partial zigbee

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14

Zigbee Analog

A
n
g
u
la

r
d
iff

.
(r

a
d
ia

n
s) complete-match

partial-match

Figure 3.14: Overlapping signal detection. (a) partial overlap between ZigBee
and analog signals (b) using partial matches between spectral signatures reduces
the angular di�erence in overlapping cases.

Implementation. Our implementation of Airshark consists of few hundred
lines of C code that sets up the FFT sampling from the Atheros AR9280 AGN
based wireless card, and about 4500 lines of Python scripts that implement
the detection pipeline. We used an o�-the-shelf implementation of the C4.5
decision tree algorithm [11] for training and classification. For the alternative
SVM-based classifier, we used an SVM implementation [7] employing a radial
basis function kernel with default parameter setting. We focus on detecting
devices in 2.4 GHz spectrum, and our current prototype has been tested with 8
classes of devices (across multiple device models) mentioned in Table 3.1.

Evaluation set up. We performed all our experiments in a university building
(except those in §3.4). Our training data was taken during the late evenings
and night times to minimize the impact of external non-WiFi interference. Our
evaluation experiments, however, were performed over a period of one week
that included both busy hours and night times. We also used the AirMaestro
signal analyzer [3] in order to determine the “ground truth” about the presence
of any external non-WiFi RF devices during our experiments.

Evaluation Metrics. We use the following metrics to evaluate the performance
of Airshark:

82

 0

 20

 40

 60

 80

 100

-100 -90 -80 -70 -60 -50 -40 -30

%
 A

cc
u
ra

cy

RSSI (dBm)

Analog Phone
AudioTx

Bluetooth
FHSS Phone

Video Camera
Microwave

Xbox
Zigbee

Figure 3.15: Accuracy of single device detection across signal strengths for
di�erent RF devices.

1. Detection accuracy: This is the fraction of correctly identified RF device
instances. This estimates the probability that Airshark accurately detects the
presence of an RF device.
2. False positive rate (FPR): This is defined as the fraction of false positives. This
estimates the probability that Airshark incorrectly determines the presence of
an RF device.

We will first evaluate Airshark’s performance in various scenarios, and then
comment on the parameters we chose. We set the energy threshold �s to -95
dBm, �B to 10 dB, and for computing NKLD we use 15000 samples. The RF
devices tested and the features used are listed in Table 3.1.

Performance evaluation

We start by evaluating Airshark using controlled experiments with di�erent RF
devices.

Single device detection accuracy

Method. We measured the accuracy of device detection when only one of the
RF devices mentioned in Table 3.1 was activated. The methodology used to
activate the devices is also listed in Table 3.1. We placed the devices at random
locations to generate the samples at di�erent RSSI values, and then computed

83

 0
 20
 40
 60
 80

 100

-100 -90 -80 -70 -60 -50 -40 -30

%
 A

cc
u
ra

cy

RSSI (dBm)

2 devices
3 devices

>= 4 devices

Figure 3.16: Accuracy of detection across signal strengths for 2, 3, and > 4
device combinations.

the average detection accuracy at each RSSI.

Results. Figure 4.10 shows the detection accuracy as a function of RSSI for
di�erent RF devices. We observe that Airshark achieves an accuracy of 98% for
RSSI values as low as -80 dBm. For RSSI values 6 -80 dBm, the accuracy drops
down due to the reduced number of pulses detected at such low signal strengths.
Further, the drop is sharper for frequency hopping devices, compared to fixed
frequency, high duty devices like analog phones and video cameras.

Multiple device detection accuracy

Method. For each run, we chose 2 6n 68 random devices from our device set,
placed them at random locations and activated them simultaneously to generate
samples at di�erent RSSI values. We then computed the average detection
accuracy at each RSSI. We repeat the experiments for di�erent combinations of
devices and locations. We note that our experiments include the “overlapping
signal” cases (§3.3).

Results. Figure 4.11 shows the detection accuracy for 2, 3, and > 4 device
combinations. We observe that even when > 4 devices are activated simulta-
neously, the average detection accuracy is more than 91% for RSSI values as
low as -80 dBm. For higher RSSI values (> -60 dBm), the detection accuracy
was 96%. For lower RSSI values, in the presence of multiple RF devices, we
observed that features like spectral signatures, duty cycles do not perform well,

84

0
0.02
0.04

Analog Audio Bluetooth FHSSMicrowaveVideo Xbox Zigbee

F
P

R

Phone Tx Phone Camera

single device

0

0.02

0.04

F
P

R 2/3 devices

0

0.02

0.04
F

P
R

>=4 devices

Figure 3.17: False positive rate for di�erent devices.

and hence result in reduced accuracy (§3.4). Overall, we find that Airshark is
reasonably accurate, and as we show in §3.4, its performance is close to that of
signal analyzers [3] using custom hardware.

False positives

Method. When performing the above experiments for single and multiple
device detection, we also recorded the false positives. Figure 3.17 shows the
distribution of false positive rate across di�erent RF devices.

Results. We observe that Airshark has a particularly low false positive rate
— even when using > 4 RF devices, operating under a wide range of signal
strengths, the average FPR was 0.39% (maximum observed FPR was 1.3%).
Further, for RSSI values > -80 dBm, the average FPR was 6 0.068%.

Overall performance summary. For a total of 8 classes of RF devices
used in our evaluation, across multiple runs and in presence of simultaneous
activity from multiple RF devices at di�erent signal strengths, Airshark exhibits
detection accuracy of > 91% even for very low signal strengths of -80 dBm.
The average false positive rate was 0.39%. At higher signal strengths (> -60
dBm) the accuracy was > 96%.

85

Location/environment Accuracy False +ves
Indoor o�ces (floor-to-ceiling walls) 98.47% 0.029%
Lab environment (cubicle-style o�ces) 94.3% 0.067%
Apartments (dormitory-style) 96.21% 0.043%

Table 3.4: Airshark’s performance in di�erent environments.

In a typical enterprise deployment with multiple APs running Airshark,
performance at low RSSI might not be a concern as we can expect at least one
AP to capture the non-WiFi device signals with RSSI >-80 dBm. Below, we
benchmark the performance under the cases with RSSI > -80 dBm. We revisit
the performance at lower RSSI in §3.4.

Location insensitivity

Method. To understand whether the peformance of our decision tree models
was a�ected by the location and the nature of the wireless environment, we
repeated the controlled experiments in three di�erent environments. In each
case, we activated the RF devices at di�erent signal strengths and measured
Airshark’s performance.

Results. Table 3.4 shows that Airshark performs reasonably well under all the
three environments with an average detection accuracy of 94.3%-98.4% and an
average FPR of 0.029%-0.067%. This shows that our decision tree models are
general, and are applicable in di�erent environments.

Performance of SVM-based classifier

Method. We compared the performance of SVM-based implementation of
Airshark with the decision tree based version. Both SVM and decision tree
implementations were trained using the same data. Similar to the previous
experiments, we placed the RF devices at random locations to evaluate the
performance at di�erent signal strengths.

86

RF device Airshark-SVM Airshark-DTree
(%) Accuracy/FPR (%)Accuracy/FPR

Analog cordless phone 98.31% / 0.037% 97.73% / 0.012%
Bluetooth (ACL/SCO) 92.03% / 0.094% 91.63% / 0.076%
FHSS cordless phone 98.44% / 0.052% 96.47% / 0.037%
Microwave oven 94.02% / 0.012% 93.16% / 0.06%
ZigBee device 97.49% / 0.048% 96.23% / 0.036%
Video camera 94.24% / 0.08% 92.70% / 0.072%
Audio tx/headphones 92.27% / 0.016% 91.23% / 0.014%
Game controller (Xbox/Wii) 90.32% / 0.064% 91.75% / 0.046%

Table 3.5: Comparison of SVM and decision tree based approaches. Table shows
per-device accuracy in the presence of multiple RF devices. The RSSI of the
devices were > -80 dBm.

Detection device Online tests Accuracy False +ves
AirMaestro [3] 1827 1803 (98.7%) NA
Airshark 1827 1761 (96.3%) 12 (0.07%)

Table 3.6: Comparison of Airshark and a detection device that uses a specialized
hardware (AirMaestro RF signal analyzer).

Results. Table 3.5 shows that the performance of SVM and decision tree
for di�erent RF devices. We observe that while SVM based implementation
performs slightly better in terms of the detection accuracy (an improvement
of up to 4%), the number false positives also increase. We elected to use the
decision tree approach as it was much faster and has comparable performance.

Comparison with specialized signal analyzers

Method. We compared the accuracy of Airshark with the AirMaestro RF signal
analyzer [3] by employing following methodology: we performed experiments
by activating a combination of RF devices at di�erent signal strengths and
collected traces from both Airshark and the AirMaestro device simultaneously.

87

 0

 0.05

 0.1

 0.15

 0.2

 0.25

-100 -90 -80 -70 -60 -50 -40

A
n

g
u

la
r

d
iff

.
(r

a
d

ia
n

s)

RSSI (dBm)

Analog phone inactive

Analog phone active

 0

 20

 40

 60

 80

 100

-1.5 -0.75 0 0.75 1.5

C
D

F

Error (MHz)

-30 dBm
-50 dBm
-70 dBm
-90 dBm

Figure 3.18: (a) RSSI vs. angular di�erence with respect to analog phone’s
spectral signature when the device is switched on and o� (b) CDF of bandwidth
estimation error at di�erent signal strengths.

Table 3.6 shows the results.

Results. We observe that out of 1827 device instances, AirMaestro was correctly
able to detect 1803 (98.7%), whereas Airshark detected 1761 (96.3%) instances.
Further, out of 66 instances where Airshark failed to identify the device, 48
instances had RSSI values of less than -80 dBm and the rest involved frequency
hopping devices with multiple other RF devices operating simultaneously. We
observed a total of 12 (0.07%) false positives and these instances occured when
operating multiple RF devices at low signal strengths.

Microbenchmarks

Airshark’s detection accuracy is a�ected by low signal strengths and increased
WiFi interference. Below we investigate these scenarios.

Performance under low signal strengths

We now highlight some of the reasons for reduced accuracy at low signal
strengths by examining two of the features.

88

 0
 25
 50
 75

 100

 0 0.25 0.5 0.75 1

%
 A

cc
u
ra

cy

Normalized Airtime Utilization

Analog (high)
Zigbee (high)

Bluetooth (high)
 0

 25
 50
 75

 100

 0 0.25 0.5 0.75 1

%
 A

cc
u
ra

cy

Normalized Airtime Utilization

Analog (low)
Zigbee (low)

Bluetooth (low)

Figure 3.19: Stress testing Airshark with extreme WiFi interference. Detection
accuracy is reduced for pulsed transmission devices (e.g., ZigBee), whereas
accuracy for frequency hoppers is minimally a�ected.

— Spectral signatures. Consider a particular center frequency and associated
bandwidth where we can expect an analog phone to operate. We wish to
compute the spectral signature on this band (based on the received power in the
FFT bins) and then measure the angular di�erence w.r.t. analog phone’s spectral
signature for (i) when the analog phone is active at this center frequency, (ii)
when the phone is inactive. For Airshark to clearly distinguish between these
two cases, there must be a clear separation between the angular di�erences i.e.,
angular di�erence must be low when the phone is active, and higher when it is
inactive. To understand the worst case performance, we also activate multiple
other RF devices by placing them at random locations. Figure 3.18(a) shows
that even in the presence of multiple devices, the angular di�erence is very
low when the phone is operating at higher RSSI. However, when the phone is
operating at lower signal strengths, the angular di�erence increases, thereby
reducing Airshark’s detection accuracy.

—Bandwidth estimation. In each run we activate a random RF device at
a random location and let Airshark compute the bandwidth of the signal.
Figure 3.18(b) shows the error in computed bandwidth at di�erent RSSI values.
We observe that Airshark performs very well at high RSSI values, but the
bandwidth estimation error increases at low signal strengths, thereby a�ecting
the detection accuracy.

89

0.3

0.6

0.9

1.2

5k 15k 45k 145k

N
K

L
D

Number of samples

1m
3m
5m
7m

8m
10m
12m
14m

0.3

0.6

0.9

1.2

5k 15k 45k 145k

N
K

L
D

Number of samples

AudioTx
Microwave

Zigbee
FHSS phone

XBOX
Bluetooth

Figure 3.20: NKLD values wrt. to audio transmitter’s pulse distribution for (a)
audio transmitter at di�erent distances (b) di�erent RF devices

Performance under extreme interference

We performed stress tests on Airshark by introducing additional WiFi interfer-
ence tra�c. We placed a WiFi transmitter close to the Airshark node (distance
of 1m) and let it broadcast packets on the same channel as the fixed frequency
RF devices. We changed the WiFi tra�c load resulting in di�erent airtime
utilizations. We tested the detection accuracy of RF devices at �igh and �ow
signal strengths (-50 dBm and -80 dBm respectively). Figure 3.19 shows the
e�ect on Airshark’s detection accuracy w.r.t. normalized air time utilization (air
time utilization is maximum, when the transmitter broadcasts packets at full
throughput). Accuracy of high duty devices (analog phone) is a�ected only in
the �ow case, when normalized airtime utilization is close to 1. For devices like
ZigBee (fixed frequency, pulsed transmissions), the e�ect is more severe in the
�ow case under increased airtime utilization. Frequency hopping devices like
Bluetooth, however, are not a�ected because Airshark is able to collect enough
pulses from other sub-bands. It is worth pointing out that all the previous
experiments were performed in the presence of regular WiFi tra�c and in
di�erent wireless environments. We therefore believe that Airshark performs
reasonably well under realistic WiFi workloads.

90

Choice of s -105 dBm -95 dBm -85 dBm
Accuracy (FPR) 97.3% (4.7%) 92.13% (0.041%) 89.24% (0.023%)

Table 3.7: E�ect of di�erent thresholds on Airshark’s performance.

Deployment Proportion of RF device instances
Microwave Bluetooth FHSS Phone Videocam Xbox

WLAN1 37.16% 52.34% 9.87% – 0.6%
WLAN2 81.65% 17.43% – 0.917% –

Table 3.8: Proportion of non-WiFi RF device instances in 2 production WLANs.
We collected data using Airshark for a duration of 48 hours.

Parameter tuning

We now discuss the empirically established parameters of our system. Table 3.7
shows the e�ect of using di�erent energy thresholds. The set up for the
experiments was similar to that in §3.4. We observe that while it is possible to
improve Airshark’s accuracy at lower RSSI values by lowering the threshold,
this comes at the cost of increased false positives. Increasing the threshold
reduces the number of peaks (and hence pulses) detected and reduces the
detection accuracy.

We now show the e�ect of number of samples on the NKLD values.
Figure 3.20 (left) shows how the NKLD values converge for an audio transmitter
device (placed at di�erent distances) with the total number of samples processed
by Airshark. We find that around 15000 samples, the NKLD values converge to
0.3. Figure 3.20 (right) compares the NKLD of di�erent RF devices when using
the pulse distribution of the audio transmitter device as reference. We find that
15000 samples are su�cient, as NKLD values of 6 0.3 can be used to indicate
the pulse distribution of the audio transmitter.

91

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
(L

|Z
)

:
L

in
k

lo
ss

 (
D

e
vi

ce
 o

n
)

P(L|-Z) : Link loss (Device off)

Links severely degraded
by Microwaves

Links severely degraded
by Video cameras

WLAN1 (Microwave)
WLAN2 (Microwave)

WLAN2 (Video camera)

Figure 3.21: Results from a two day deployment of Airshark in two production
WLANs. Each point in the scatter plot denotes the loss rate for a link in the
absence (p(L|¬Z)) and the loss rate in the presence (p(L|Z)) of (i) microwave
ovens, (ii) video cameras, for a total of 224 links (168 links in WLAN1 and 56
links in WLAN2).

Example uses of Airshark

We now demonstrate Airshark’s potential through example applications. We
monitored the RF activity on a single floor of two production WLANs using
regular wireless laptops that ran Airshark and also captured packets using
tcpdump. WLAN1 used 7 APs and WLAN2 employed 3 APs on the monitored
floor. We collected the data for 48 hours at each location. To provide confidence
in our statistical estimates, we restrict our analysis to a total of 224 links (168
links in WLAN1, 56 links in WLAN2) that exchange at least 150 packets in our
packet traces. Airshark can help WLAN administrators answer the following
questions about RF device activity in their networks:

92

Airshark Trace Loss rate Airshark Trace Loss rate
Duration Microwave Link L1 Duration Microwave Link L2
14:35:19-14:55:18 OFF 10.52% 16:50:36-16:53:19 OFF 16.66%
14:55:18-14:55:46 ON 86.20% 16:53:19-16:53:52 ON 79.61%
14:55:46-15:00:22 OFF 10.91% 16:53:52-17:13:22 OFF 15.78%
15:00:22-15:02:40 ON 45.88% 17:13:22-17:15:19 ON 48.78%
15:02:40-15:04:45 OFF 7.63% 17:15:19-17:33:20 OFF 15.00%

Table 3.9: Airshark traces for the time periods relevant to links L1 and L2
(WLAN1) showing increased losses due to microwave oven activity.

Question. “Which non-WiFi RF devices were visible in the WLANs? How long
were the devices active, and which devices appeared more frequently?”

Analysis. Using traces from Airshark, we found that non-WiFi devices were
active for 22.6% (10.48 hrs) and 13.92% (6.68 hrs) of the trace duration in WLAN1
and WLAN2 respectively. Table 3.8 shows the proportion of non-WiFi RF
device instances in the two WLANs—microwave ovens (37.16% and 81.65%)
and Bluetooth devices (52.34% and 17.43%) occurred most frequently in WLAN1
and WLAN2. FHSS cordless phones accounted for 9.87% of the instances in
WLAN1. Game controllers and video cameras were also visible, albeit for very
short durations.

Question. “Did any of the links in the WLAN su�er from interference due to non-
WiFi devices? Which non-WiFi devices caused the most interference?”

Analysis. Airshark can help identify the interference-prone links as follows:
Let L denote the event of a packet loss on a wireless link. We note that L might
include losses due to non-WiFi interference as well as those due to “background
losses” (e.g., due to weak signal)4. Let Z be the event that a non-WiFi device z

is active. We compute the probability of a packet loss given the device is active,
4We note that intermittent losses may also occur due to potential hidden terminals in the

network. We used PIE [149], a system that can detect hidden conflicts, to discard such cases
from the traces.

93

p(L|Z), and the probability of a packet loss given the device is inactive, p(L|¬Z)
as follows:

1. Using Airshark, we identify the periods when the device z was active (t
on

),
and when the device z was inactive (t

o�

).
2. For each link, we compute the total number of packets transmitted on the

link during t

on

, and the corresponding number of packets lost, to measure
p(L|Z). Similarly, we compute p(L|¬Z) by measuring the loss rate during
t

o�

.
3. For the links severely interfered by device z, we can expect p(L|Z)� p(L|¬Z).

We make the following observations:
— Microwave Ovens: Figure 3.21 shows the impact of microwave oven activity
using a scatter plot of p(L|Z) and p(L|¬Z). We observe increased losses for a
few links (70-80%). We found that around 20% links in WLAN1 and 10% links
in WLAN2 had more than 20% increase in loss rates. Further, for around 5% of
the links, the loss rates increased by more than 40%. Table 3.9 shows snapshots
of Airshark traces and loss rates for two links L1 and L2 that experienced
interference from microwave ovens.
— Video camera: The camera was active only for around 3 minutes in the WLAN2
trace, but it had a severe impact on two of the links as shown in Figure 3.21.
Losses for the two links increased from 6.47% to 77.67%, and 12.47% to 44.85%
during the period the camera was on.
— Bluetooth/Xbox/FHSS phones: In both the traces, we did not find any impact
of these devices on the link loss rates.

�.� ������ ��� ����������

Our work on Airshark is a first step towards detecting non-WiFi devices using
commodity WiFi hardware, and is certainly amenable to various improvements.
We now discuss some of the limitations and opportunities with detection
approaches such as Airshark that we have not fully explored in this work.

94

• Understanding the e�ects of sequential sampling on ground truth.
Due to driver limitations, current spectral sampling procedure imple-
mented in Airshark is sequential in nature — Airshark scans the entire
spectrum in a sequential order and spends an equal amount of time on
each sub-band to collect samples. This implies that at any given instant,
Airshark loses samples corresponding to all other sub-bands that are not
being monitored. While we ran our training experiments in controlled
settings with signal analyzers monitoring the spectrum, we currently are
not able to capture the “entire device activity” (or the ground truth) for
some of the devices. For example, for devices such as frequency hoppers
(e.g., Bluetooth or XBox controllers) we are only able to capture partial
activity corresponding to one sub-band at a time. Losing samples a�ects
the device detection time as it increases the time to capture features such
as the pulse spread (Section 3.3). One way forward is to use multiple
Airshark nodes each statically monitoring a particular sub-band and
merging the samples to construct the entire device activity. We note
that such an approach would require the clocks on Airshark nodes to be
time synchronized (See Chapter 7). Capturing the entire device activity
would then help us benchmark the sequential sampling procedure and
understand the scope for improvement in Airshark’s accuracy. This will
also be useful in benchmarking other sampling approaches described
next.

• Improving sampling procedure. We note that sequential sampling
approaches are sub-optimal as spectrum might not be equally utilized.
For example, some parts of the spectrum might be more crowded (due to
high activity from a particular non-WiFi device, or due to the presence
of multiple non-WiFi devices in this portion of the spectrum). A better
sampling approach would be “sense” the parts of spectrum that are more
crowded, and adaptively tune the dwell times on the sub-bands with higher
non-WiFi device activity. Examples of such approaches include active
sensing mechanisms [35] that are adaptive in nature. Newer sampling
mechanisms such as distilled sensing [63] approaches are also of interest.

95

These approaches are based on the notion that it is often easier to rule
out parts of the spectrum that do not contain signal than it is to directly
identify non-zero signal components. We expect such adaptive sampling
mechanisms to improve Airshark’s detection accuracy and the time to
detect each of the active devices.

• Handling multiple overlapping signals. Currently, Airshark can only
handle a limited number (up to 6) of simultaneously active devices. A
limiting factor in Airshark’s detection capabilities in presence of multiple,
simultaneously operating non-WiFi devices is that of “overlapping signal
scenario” — a scenario where signals from multiple devices that always
happen to overlap in both time and frequency domain. We find that
our extensions to handle such cases (e.g., using partial signatures) are
not particularly e�ective, resulting in degradation in detection accuracy.
Instead of using partial signatures, another approach would be to treat
the received samples as a addition of individual known signals (since
total power of the received signal is equal to the sum of the powers of the
constituent signals and noise) and train the classifier for possible overlap
combinations of di�erent devices [66]. There is also a scope for applying
signal de-noising approaches [47, 167] that can prove to be beneficial in
such overlapping signal cases.

�.� ������� �� ��������

In this chapter, we first motivated the need to detect non-WiFi RF devices by
characterizing their prevalence in typical environments. We then presented
Airshark, a system that can detect the non-WiFi devices using only the
functionality provided by commodity WiFi cards. Airshark extracts unique
features using energy samples from a WiFi card and presents a generic, and
extensible framework to accurately detect multiple non-WiFi devices, while
maintaining a low false positive rate. We also found its performance to be
comparable to a commercial signal analyzer. Through a deployment in two

96

production WLANs, we demonstrated Airshark’s potential in understanding
non-WiFi interference issues.

97

� �������������� ���-���� ������������ ����� ����
��������

�.� ����������

In the previous chapter, we showed how a WiFi device can use information from
emerging wireless cards to detect the presence of non-WiFi devices operating in
its vicinity. In this chapter, we design WiFiNet — a collaborative neighborhood
of WiFi nodes — to identify and “catch” the non-WiFi transmitters that are
actually causing harmful interference to WiFi communication (Figure 4.1). More
specifically, through WiFiNet we can answer the following questions — how
much interference is any non-WiFi RF transmitter (e.g., a Bluetooth headset,
an active analog phone, or a microwave oven) causing to an existing WiFi
communication and where in the physical space is each such non-WiFi interferer
located?

Much of the prior work has employed custom hardware to tackle non-WiFi
interference. Examples include commercial products such as AirMaestro [3]
and Wispy [12] that build specific signatures to detect the presence of a device.
Recent research e�orts (e.g., RFDump [98], DOF [66], TIMO [139]) have used
the flexibility allowed by software radios to develop novel signal processing
techniques and physical layer designs to co-exist with these devices. The
unique aspect of WiFiNet is that it is built entirely on top of standard WiFi
network interface cards (NICs). In particular, an emerging class of WiFi NICs,
such as those based on the Atheros 9280 chipset, as part of their WiFi frame
decoding process, provide coarse-grained energy samples per sub-carrier of a
WiFi channel. These energy samples are a few orders of magnitude lower in
resolution than available to the sophisticated spectrum analysis tools. Using
such functionality, in the previous chapter we presented Airshark [131] and have
shown that even with such a low resolution input, a regular WiFi node (either
an Access Point or a client) can individually detect the presence of non-WiFi
devices.

98

WiFiNet Controller
WiFi framesCordless phone

transmissions

AP1

(Interference estimation + Localization)

Microwave oven
transmissions

 Client 2

 Client 1

AP2

Microwave OvenCordless phone

AP3

Figure 4.1: Illustration of WiFiNet’s architecture.

Airshark is, however, is only the first step in the broad space of decon-
structing non-WiFi interference and quantifying their impact on WiFi links.
WiFiNet leverages collaboration between multiple WiFi nodes to address both
quantification of interference impact and localization of these interferers, as we
explain below.

Quantifying non-WiFi interference impact in real-time: The mere pres-
ence of a non-WiFi device, as detected by Airshark, in the vicinity of a WiFi
transmitter is not always harmful. For instance, an active analog cordless phone
at a specific location, may only have a minimal impact on a particular WiFi link.
We call such a low-impact non-WiFi device, a minnow. On the other hand, a
microwave oven radiating a significant amount of energy in its vicinity might
cause severe disruption to nearby WiFi links. We call such an interferer, a whale.

However, the impact of interference from the same non-WiFi device can
quickly change over time. For instance, if the microwave oven’s setting is
adjusted to operate with a low power level, this device may suddenly turn into
a minnow. On the other hand, if the cordless phone user moves to a di�erent
location which is closer to the WiFi link, this device might turn into a whale with
respect to this WiFi link. It is even possible that the impact of the cordless phone
on the WiFi link changes due to properties of the WiFi link itself. For example,

99

when the WiFi link is operating at 54 Mbps, the disruptive impact of the cordless
phone is quite high, with the impact decreasing as a rate adaptation algorithm
reduces the WiFi link’s choice of PHY rates. WiFiNet tracks this continuously
changing impact of non-WiFi transmitters on WiFi communication in real-time,
adjusting its interference estimates immediately as operating parameters change
(e.g., the microwave power setting is changed, or the WiFi device’s PHY rate
selection algorithm starts operating with a higher rate).

Locating non-WiFi interferers: WiFiNet also determines the physical
location of such non-WiFi transmitters immediately, so that the precise source
of such interference can be determined, and if needed, such interfering devices
can either be re-configured or disabled.

Through these new and unique capabilities, WiFiNet provides new RF
management tools for WiFi environments using o�-the-shelf WiFi NICs only,
obviating the need for sophisticated wireless hardware. In fact, WiFiNet can
be easily implemented and integrated into enterprise WiFi APs to achieve
improved mitigation strategies against non-WiFi interference for enterprise
environments.

Challenges in designing WiFiNet

In designing and implementing the capabilities of WiFiNet, we had to overcome
the following set of challenges:

How to detect multiple devices of the same type? In many wireless
environments, there are multiple devices of a given type, e.g., two di�erent
cordless phones. It is possible that among these two phones, one is a whale
and causes 80% loss in throughput to a WiFi link, while the other is a minnow
and causes only 5% loss in throughput. To di�erentiate between these two
interferers, WiFiNet needs to determine how many devices of each type are
operating at any given instant. To achieve this goal, WiFiNet utilizes tight clock
synchronization, and employs signal clustering techniques operating on some
device specific attributes (when available) and signal strength observations
gathered by multiple WiFi detectors to identify the unique transmission

100

contributions from di�erent, potentially identical, non-WiFi devices. Our prior
work, Airshark, builds signatures of each device type to detect the presence
of any such device in the vicinity of the detecting WiFi node. But such an
individual WiFi node is not able to determine if there is only one or two or
three di�erent FHSS cordless phones in the vicinity, and hence, cannot attribute
which part of wireless transmissions belong to which such interferer.

How to estimate each device’s impact? After segregating each non-WiFi
device’s transmissions, WiFiNet uses specific timing analysis for estimating
the impact of each interferer — time-frequency overlaps between the WiFi
frames and non-WiFi device’s transmissions are analyzed and correlated with
the outcomes (frame success or loss) to discern the impact of each device. Our
technique works well for both low and high duty devices. In our design, we take
into account the carrier sensing interference, interference from WiFi sources
and multiple PHY rates of operation used by WiFi links.

How do we localize the non-WiFi device? Localization in indoor wireless
environments is a well studied problem [25, 29, 140, 166]. Common techniques
include signal strength based triangulation [166] and RF fingerprinting ap-
proaches [25]. However, the key requirement for such localization approaches is
for multiple detectors to detect the same transmission at di�erent signal strengths.
In the commonly known WiFi localization techniques, this is easy because the
di�erent detectors decode the same wireless frame and use the frame’s identity
to ensure sameness.

In our case, the WiFi detectors cannot decode the non-WiFi transmissions,
and hence cannot immediately assign the same identity to “pulses” received
from the non-WiFi transmitters. A core challenge that we needed to solve is
for di�erent WiFi detectors to determine which received pulses correspond to
a single transmission from the same non-WiFi device. The next challenge is
to build a model for localization. Propagation characteristics are similar for
both WiFi and non-WiFi transmitters since they operate on the same frequency.
WiFiNet exploits this fact and builds the model by exchanging WiFi frames and
recording signal strength measurements. Since the transmit power of non-WiFi
devices can be arbitrarily di�erent from that of WiFi nodes, the model takes
this into account by operating on the di�erence in received signal strengths.

101

Through experiments, we show the feasibility of this approach for non-WiFi
device localization using WiFi-only detectors.

Summary of key contributions: Summarizing, the key contributions of
our WiFiNet system are three-fold: (i) it detects and discerns the transmission
contributions of di�erent non-WiFi interferers in the vicinity of the WiFi
detectors; (ii) it attributes interference impact of each such non-WiFi device
for any given WiFi link, classifying them as whales, minnows, or anything
else in between, through collaborative observations; and (iii) it pinpoints the
location of each such non-WiFi interferer so that they can be independently
re-configured or disabled. All of these capabilities are implemented using
WiFi-only detectors.

The entire WiFiNet system has been implemented using the Atheros AR
9280 based WiFi NICs, and evaluated in detail through various experiments.
Our results indicate a typical impact determination accuracy of > 90% and a
localization error of < 4 meters in these environments.

�.� �������

We start by presenting an overview of WiFiNet’s architecture, followed by the
details of its design and operation.
Architecture and flow of operations. WiFiNet employs collaborative observa-
tions from multiple WiFi-only detectors spread across a network to perform
its non-WiFi device interference estimation and localization operations. Since
most enterprise APs today come equipped with multiple WiFi radios, one way
to deploy WiFiNet would be to employ one of the radios as a detector. In
such a setting, WiFiNet can function as follows. All the enterprise APs are
connected to a central controller over an Ethernet backplane. Each AP has two
radios: (i) a regular radio that used to communicate with the clients, and (ii)
a detector radio that continuously captures spectral samples as well as WiFi
frames. APs run Airshark [131] to process the spectral samples and perform
device detection. Airshark outputs a set of “pulses” (time-frequency blocks
representing non-WiFi device transmissions), and tags these pulses with the
appropriate device type (e.g., Bluetooth, ZigBee, etc.). Each pulse reported

102

W
iF

iN
et

 A
P

1
3 2

Ca
pt

ur
ed

 p
ul

se
s

Ai
rs

ha
rk

W
iF

iN
et

 A
P

Ca
pt

ur
ed

 W
iF

i F
ra

m
es

Ai
rs

ha
rk

3
2

4

W
iF

iN
et

 A
P

Ca
pt

ur
ed

 p
ul

se
s

Ca
pt

ur
ed

 W
iF

i F
ra

m
es

Ai
rs

ha
rk

1
5

4

Ca
pt

ur
ed

 W
iF

i F
ra

m
es

1
3

2
4

5

Pu
ls

e
Sy

nc
hr

on
iz

at
io

n

Pu
ls

e
co

ns
ol

id
at

io
n

(S
ec

 2
.1

)

Fr
am

e
sy

nc
hr

on
iz

at
io

n
(S

ec
 2

.1
)

3

1
4

3
2

5

AP
s

RSS

Ti
m

e
of

fs
et

G
en

er
ic,

 R
SS

 b
as

ed

clu
st

er
in

g
De

vic
e-

sp
ec

ific
clu

st
er

in
g

In
te

rfe
re

r 1
In

te
rfe

re
r 2

1
4

O
ve

rla
p

an
al

ys
is

In
te

fe
re

nc
e

Es
tim

at
io

n
(S

ec
 2

.3
)

AP
s

RSS

1

2

4

YE
S

NO
Co

ns
ol

id
at

io
n

cr
ite

ria

Ti
m

e

Frequency

BW
 re

so
lu

tio
n

Sa
m

pl
in

g
re

so
lu

tio
n

Co
ns

ol
id

at
ed

 p
ul

se
s

5

Li
nk

 1

Li
nk

 N
De

vi
ce

 L
oc

al
iz

at
io

n
(S

ec
 2

.4
)

6

In
te

rfe
re

r 1
 (W

ha
le

) a
ffe

ct
s

Li
nk

 1
, a

t R
oo

m
 7

33
1

In
te

rfe
re

r 2
 (M

in
no

w
) a

t R
oo

m
 5

38
8

Prob.

Lo
ca

tio
ns

Pe
r-

Li
nk

Fr
am

e
su

m
m

ar
ie

s

Pe
r-D

ev
ic

e
Pu

ls
e

Tr
ac

e

Un
iq

ue
 D

ev
ic

es

W
iF

iN
et

 O
ut

pu
t

W
iF

iN
et

 C
on

tro
lle

r
O

pe
ra

tio
ns

Pu
ls

e
Cl

us
te

rin
g

(S
ec

 2
.2

)

(S
ec

 2
.1

)

Fi
gu

re
4.

2:
Fl

ow
of

op
er

at
io

ns
in

W
iF

iN
et

.W
iF

iN
et

A
Ps

ca
pt

ur
e

sp
ec

tra
ls

am
pl

es
as

w
el

la
sW

iF
if

ra
m

es
.E

ac
h

A
P

ru
ns

A
irs

ha
rk

[1
31

]t
o

de
te

ct
no

n-
W

iF
id

ev
ic

es
an

d
ou

tp
ut

no
n-

W
iF

ip
ul

se
s(

tr
an

sm
is

si
on

s)
ta

gg
ed

w
ith

de
vi

ce
ty

pe
.W

iF
if

ra
m

es
ar

e
us

ed
to

sy
nc

hr
on

iz
e

th
e

cl
oc

ks
at

th
e

A
Ps

.S
yn

ch
ro

ni
ze

d
cl

oc
ks

at
th

e
A

Ps
ar

e
th

en
us

ed
to

co
ns

ol
id

at
e

th
e

pu
lse

sa
cr

os
sm

ul
tip

le
A

Ps
us

in
g

a
he

ur
ist

ic
(§

4.
2)

.C
on

so
lid

at
ed

pu
lse

sa
re

th
en

cl
us

te
re

d
us

in
g

(i)
RS

S
ba

se
d

cl
us

te
rin

g
an

d
(ii

)d
ev

ic
e-

sp
ec

ifi
cc

lu
st

er
in

g
m

et
ho

ds
to

ou
tp

ut
un

iq
ue

no
n-

W
iF

id
ev

ic
e

in
st

an
ce

s
an

d
th

ei
r

pu
ls

es
(§

4.
2)

.
Fo

r
ea

ch
no

n-
W

iF
id

ev
ic

e
in

st
an

ce
an

d
W

iF
il

in
k,

th
e

in
te

rf
er

en
ce

de
te

ct
io

n
m

od
ul

e
th

en
an

al
yz

es
th

e
im

pa
ct

of
th

e
de

vi
ce

on
th

e
lin

k
us

in
g

tra
ns

m
is

si
on

ov
er

la
ps

(§
4.

2)
.M

od
el

-b
as

ed
lo

ca
liz

at
io

n
al

go
rit

hm
sa

re
us

ed
to

lo
ca

liz
e

ea
ch

no
n-

W
iF

id
ev

ic
e

in
st

an
ce

(§
4.

2)
.

103

by Airshark consists of the start and end timestamps, center frequency and
bandwidth of the pulse, the average received power of the pulse, and a tag
that indicates the device type. Next, the APs also process the captured WiFi
frames to create a per-client frame transmission summary: frame start and end
timestamps, PHY rate, and reception status (i.e., whether the AP received an
ACK for this frame or not). The proximity between the two radios ensures that
the detector radio receives the majority of frames transmitted by the regular
radio due to capture e�ect, thereby creating an accurate summary of frame
transmissions [149]. The per-client WiFi frame transmission summaries and
the captured non-WiFi pulse traces are forwarded to controller to identify the
individual non-WiFi device instances, estimate their interference impact and
localize them. Figure 4.2 presents the overall control flow. We now explain each
of these tasks in detail.

Identifying unique pulses

Since the same pulse can be received by multiple APs in the WLAN, the first
task for the controller is to consolidate the traces and identify the unique pulses
transmitted by di�erent non-WiFi devices operating in the environment. To do
this, the controller has to identify the “common” pulses received by the APs
and create a single consolidated pulse. However, finding common pulses is not
straightforward as WiFi APs cannot decode non-WiFi pulses.

Pulse consolidation. WiFiNet uses a heuristic to consolidate the pulses: if two
APs receive a pulse that has the same device type (e.g., Bluetooth), has the
same start and end times, has the same center frequency and bandwidth, then
most likely the APs received the same pulse (transmitted by a particular non-
WiFi device). In practice, we allow a certain leeway as these parameters might
not exactly match e.g., we allow the maximum di�erence between the pulse
start (and end) times to be FFT sampling resolution of the WiFi card (116µs for
AR9280 card) and that between pulse center frequencies (and bandwidths) to be
resolution bandwidth of the WiFi card (312.5 kHz or equal to 802.11 sub-carrier
spacing).

104

To apply the heuristic, however, would require the pulse traces at the
APs to be synchronized. How do we synchronize the pulse traces without
knowing common pulses (i.e., reference points)? WiFiNet solves this issue by
leveraging the WiFi hardware — the timestamps of the pulses are derived from
the same clock that is used to timestamp the captured WiFi frames. WiFiNet first
synchronizes the clocks at all the APs using captured “common” frames as
reference points, and then uses the synchronized APs to find “common” pulses.
We now explain these tasks.

Opportunistic synchronization. Synchronization can be easily carried out if
we find one reference frame that is received by all WiFiNet APs in the WLAN.
However, this is highly unlikely in practice as the wireless signal attenuates
over distance. Therefore, WiFiNet opportunistically synchronizes ‘pairs of APs’
using common received frames (reference frames used for synchronization are
typically beacon frames or data frames without the retransmit bit set [38, 123]) ,
and then transitively synchronizes the sni�er radios at all the APs using a graph
based approach:

1. Instantiate a synchronization graph, syncGraph = (S,E) where each vertex
si represents the sni�er radio at WiFiNet AP i, and the weight w(eij) of the
edge eij : si ! sj represents the clock skew between the APs. Initially, S
comprises of all vertices and has no edges.

2. For each pair of WiFiNet APs (si, sj), we start by finding the set of reference
frames (common received frames). Compute di�erence in timestamps for
each of the reference frames, and use the median value as the clock skew.
This results in instantiating an edge eij in the syncGraph with weight equal
to skew between the APs.

3. After processing all pairs of APs, start with a reference AP (s0), chosen
randomly, and perform a breadth-first search on the syncGraph to transitively
synchronize all the APs with respect to the reference AP.

The above synchronization procedure is repeated every sync interval in order
to account for the clock drift. Figure 4.3 shows the synchronization error as a

105

 0

 20

 40

 60

 80

 100

-20 -10 0 10 20

C
D

F
Error (us)

100ms
200ms
500ms

1000ms

s1

s0

s2
s4

s3

s5
s6

(0 us)
-6

+2

-2

+3

+1

(1 us)

(-4 us)

+4

(+2 us)

(+3 us)

(-6 us)

SyncGraph

(+4 us)

s7-3 (-1 us)

Figure 4.3: (left) Illustration of graph based opportunistic synchronization used
in WiFiNet. Each node is an WiFiNet AP (s0 is the reference AP), weights
on the edges correspond to the pair-wise AP skews, and the numbers in the
parentheses are the final synchronization o�sets of the APs (i.e., skews w.r.t.
reference s0) (right) CDF of synchronization error for our deployment of 8
WiFiNet APs at di�erent sync intervals. Error in synchronization is 6 6 µs for
a sync interval of 500 ms.

function of sync interval for our deployment of 8 WiFiNet APs. We observe
that the error increases with the increase in sync interval (e.g., an error of < 6 µs
for an interval of 500 ms). In WiFiNet, we use a sync interval of 100 ms which
results in tight synchronization between the APs (an error of less than 2-4 µs
in most cases).

Output from consolidation. The controller applies the appropriate synchro-
nization o�sets to each AP’s pulse trace and then finds the common pulses
among the APs using the heuristic mentioned above. The consolidation
process can be carried out e�ciently as the pulses are sorted by time. After
consolidation, the controller is left with unique pulses transmitted by non-WiFi
devices, and for each unique pulse, we associate an RSS vector r = [r0, . . . , rN-1]

that represents the received power of this pulse at each of the N APs in the
WLAN. We set ri to the average received power of the pulse at ith AP, if the
pulse was indeed received this AP, otherwise ri = �.

106

 0 10 20 30 40 50

Frequency bins (CF: bin 28, 2452 MHz)

 2834

 2836

 2838

 2840

 2842
T

im
e

 (
m

s)

-140

-120

-100

-80

-60

-40

si
g

n
a

l s
tr

e
n

g
th

 (
d

B
m

)

Base 1 Base 2

Handset 1

Handset 25 ms

Offset 1
Offset 2

0

2

4

6

8

 0 10 20 30 40 50

Frequency bins (CF: bin 28, 2452 MHz)

 2834

 2836

 2838

 2840

 2842

T
im

e
 (

m
s)

-140

-120

-100

-80

-60

-40

si
g

n
a

l s
tr

e
n

g
th

 (
d

B
m

)

Base 1 Base 2

Handset 1

Handset 25 ms

Offset 1
Offset 2

0

2

4

6

8

 0 10 20 30 40 50

Frequency bins (CF: bin 28, 2452 MHz)

 2834

 2836

 2838

 2840

 2842

T
im

e
 (

m
s)

-140

-120

-100

-80

-60

-40

si
g

n
a

l s
tr

e
n

g
th

 (
d

B
m

)

Base 1 Base 2

Handset 1

Handset 25 ms

Offset 1
Offset 2

0

2

4

6

8

 0 10 20 30 40 50

Frequency bins (CF: bin 28, 2452 MHz)

 2834

 2836

 2838

 2840

 2842
T

im
e

 (
m

s)

-140

-120

-100

-80

-60

-40

si
g

n
a

l s
tr

e
n

g
th

 (
d

B
m

)

Base 1 Base 2

Handset 1

Handset 25 ms

Offset 1
Offset 2

0

2

4

6

8

 0 10 20 30 40 50

Frequency bins (CF: bin 28, 2452 MHz)

 2834

 2836

 2838

 2840

 2842
T

im
e

 (
m

s)

-140

-120

-100

-80

-60

-40

si
g

n
a

l s
tr

e
n

g
th

 (
d

B
m

)

Base 1 Base 2

Handset 1

Handset 25 ms

Offset 1
Offset 2

0

2

4

6

8

 0 10 20 30 40 50

Frequency bins (CF: bin 28, 2452 MHz)

 2834

 2836

 2838

 2840

 2842

T
im

e
 (

m
s)

-140

-120

-100

-80

-60

-40

si
g

n
a

l s
tr

e
n

g
th

 (
d

B
m

)

Base 1
Base 2

Handset 1

Handset 2
5 ms

Offset 1
Offset 2

0

2

4

6

8

Figure 4.4: Heatmap of 4 FHSS cordless phone devices (2 base/handset pairs)
captured by a WiFiNet AP, showing the timing property. Each base/handset
pair emits two short pulses that are both at the same center frequency and are
separated by 5 ms. The pair then jumps to a di�erent center frequency after 10
ms and repeats the process. WiFiNet identifies the pulses belonging to each
device by calculating their timing o�sets (pulse start time modulo 10 ms).

Identifying unique device instances

After obtaining the unique pulses, the next task for the controller is to detect the
number of non-WiFi device instances, segregate the pulses belonging to each
instance and establish a unique ID for it. WiFiNet first segregates the pulses
according to their device type, and employs clustering algorithms for further
segregation. The algorithms determine “the number of clusters” (non-WiFi
device instances), and assign each pulse to a cluster. The combination of (device
type, cluster center) is then used as the ID for this device instance. In our current
prototype, we implement (i) a generic, RSS based clustering that is applicable
to all non-WiFi devices and (ii) clustering based on timing properties that is
specific to some non-WiFi device types. We now explain both approaches.

Generic clustering based on signal strength

WiFiNet’s generic clustering approach operates on RSS vectors that are N-
dimensional (i.e., vector sizes grow with the number of APs). Since the

107

-80
-60

-40 -80

-60

-40

-80

-60

-40

RSS

Base 1
Handset 1

Base 2
Handset 2

RSS

RSS

RSS

Oven 1
Oven 2

Base 2
Base 1

Handset 1

Handset 2

Base 1

Base 2

Handset 1

Handset 2

0

2.5

5

7.5

10

 0 40 80 120 160

O
ff

se
t

(m
s)

Merged pulses

0

5

10

15
16.66

0 500 1K
O

ff
se

t
(m

s)
ON periodsPulses

Figure 4.5: Segregating pulses in the presence of multiple, simultaneously
operating devices of the same type, based on WiFiNet’s device specific and
generic clustering. Figure shows clusters of pulses from (left) 2 FHSS cordless
phone base/handset pairs (4 FHSS cordless devices) using pulse start time o�set
(middle) 2 Microwave ovens using ON-period o�set (right) 4 FHSS cordless
devices using a generic, RSS based k-means + EM-clustering technique using 3
WiFiNet APs.

performance of clustering mechanisms typically degrades with increase in
the number of dimensions, we first filter out some of the dimensions before
performing clustering.

Reducing vector dimensions. We use some optimizations to reduce the
number of dimensions: (i) clustering is performed every scan window (5 secs in
our current prototype) to keep the number of pulses low (ii) APs not receiving
any pulse in the current window are discarded (iii) The controller uses the
syncGraph (§4.2) as a proxy for “RF neighborhood” of APs and segregates the
APs into di�erent partitions using the following heuristic. For each pulse, we
determine the WiFiNet AP with the highest RSS, and increment a counter for
this AP. After processing all the pulses, we assign the AP with the highest
counter to first partition. We then pick each AP (in the decreasing order of
the counters) and place it in one of the existing partitions if it satisfies the RF
neighborhood constraint: in the syncGraph, the AP has to be within a 2-hop
neighborhood of the AP with the highest counter for this partition, otherwise
we create a new partition for this AP. This breaks the clustering problem into

108

sub-problems, each operating on one partition.

Handling missing values. After partitioning the RSS vectors to reduce the
dimensionality, another problem remains: RSS vectors might still have missing
values (i.e., ri = �) for some columns. This is because APs might capture
pulses intermittently (i) as they are far from the device, or (ii) due to a stronger
signal from other WiFi or non-WiFi transmissions [131] that overlapped with
the pulse. While it is possible to define a distance function for clustering
that ignores missing values in the vectors, such a function is unsuitable for
many traditional clustering algorithms as it doesn’t satisfy certain mathematical
properties such as the triangle inequality [70]. This presents us with two choices,
(i) use clustering algorithms which allow a certain degree of freedom in the
formulation of a suitable distance function or (ii) fill in the missing values
using a best-e�ort approach, and then use traditional clustering algorithms.
We explored both these choices.

(Method 1) Density-based clustering. We used ������ [72], a density-based
clustering approach that allowed us to formulate a distance metric that can
handle missing values. Let P and Q be the set of APs receiving the pulses p

and q, and C be the set of common APs that received both pulses. We define
⌘ = |C|/max(|P|, |Q|) and compute the distance between two pulses p and q as:

⌧(p,q) =

8
>><

>>:

s
1
|C|

X

i2C

[r(p)i - r
(q)
i]

2
if ⌘ > ⌘o, |C| > Cmin

+1 otherwise

The above measure only takes signal strength from common APs into
account, and any missing RSS values do not a�ect the distance. Intuitively,
the introduction of parameters ⌘o and Cmin is to account for the case when
the di�erence in the set of APs receiving the pulses is too large. We comment
on these parameters in §5.7.

109

(Method 2) k-Means + EM-clustering. Another approach to handle missing
values is to first perform imputation — missing values in a particular column are
replaced (e.g., using a median or mode of the column). In WiFiNet, we use EM-
Imputation [11], a well known imputation method, where the missing values are
replaced by using expectation maximization with a multi-variate normal model.
After imputation, we can use traditional clustering mechanisms as the distance
function (e.g., Euclidean) can now operate on all the columns of the vectors. We
experimented with several clustering algorithms and found that a combination
of k-Means and EM-clustering perform the best: WiFiNet controller iteratively
runs the k-Means clustering algorithm with di�erent values of k (1 6 k 6
kmax), and then picks the best solution [11]. This is used as the initial solution to
the EM-clustering algorithm, which outputs the final non-WiFi device instances
and the corresponding pulses. In our experiments, we set kmax = 10 i.e., we
assume that the maximum number of simultaneously operating devices of the
same type to be 10. Figure 4.5 (right) shows an example result for RSS based
clustering for 4 FHSS cordless phone device instance using 3 WiFiNet APs. In
§5.7, we compare the performance of the above clustering algorithms.

Clustering based on device specific attributes

We found that some non-WiFi device types exhibit certain specific timing
properties that can be exploited to provide better clustering performance
compared to the generic RSS based clustering approach. In WiFiNet, we
implemented such clustering for two non-WiFi device types:
— Pulse start time o�set for FHSS cordless phones. WDCT cordless phone sets
cycle through frames of 10 ms: each frame consists of two short pulses, one
emitted by the base at the beginning of the frame and the other by the handset,
occurring after 5 ms (both at the same center frequency). Both base and handset
then jump to a di�erent center frequency for the next frame. Figure 4.4 shows
the pulses from two cordless phone sets (i.e., 2 base/handset pairs, a total of 4
unique cordless phone devices) captured by WiFiNet. Figure 4.5 (left) shows
that clustering based on the pulse start time o�sets (t ��� 10) can segregate the
pulses belonging to each device.

110

— ON-period o�set for microwave ovens. Microwave ovens emissions exhibit an
ON-OFF pattern, typically periodic with a frequency of 60 Hz (frequency of
the AC supply line) i.e., a period of 16.66 ms [131]. WiFiNet computes the o�set
for start times of the microwave pulses (ON periods) as t ��� 16.66 and uses
this to segregate their pulses. Figure 4.5 (middle) shows the result of clustering
pulses from two microwave ovens operating simultaneously.

Interference Estimation

After clustering, WiFiNet controller now has a set of clusters, each representing
a unique non-WiFi device instance. We now explain how the controller can
analyze the interference impact of each device instance.

Intuition and Overview. For each non-WiFi interferer instance and a WiFi
link, WiFiNet controller performs interference analysis by correlating the the
link’s frame transmission with the non-WiFi device’s pulse transmissions and
observing the reception status of the frames. It measures the impact of a non-
WiFi device on a WiFi link by computing the probability of a frame loss when
the frame overlaps with a simultaneous transmission from the non-WiFi device.
Intuitively, the extent of interference is directly proportional to the probability
of losing overlapping frames. This allows WiFiNet to maintain a continuous
interference model, where the extent of interference can be any value between 0
and 1. For instance, in Figure 4.6, the controller observes that frames transmitted
on a link are unsuccessful whenever a non-WiFi device’s pulse overlaps with the
frame in time (and frequency) i.e., frames F1 and F3 overlap with non-WiFi device
pulses T1 and T2, and are lost. It can therefore infer that the device strongly
interferes with the link. Such fine-grained timing analysis is possible because
APs are tightly synchronized (§4.2) and they use the same clock to timestamp
both pulses and the frames. We now explain our interference estimation metrics.

Metrics for interference estimation. Formally, the interference estimation
metrics used in WiFiNet can be explained as follows. Let I be the event that
interference from a particular non-WiFi device causes a frame transmission

111

T1

F1 F2 F3

T2

Time
synchronized

frame summary
(e.g., from AP1)

Loss Success

synchronized
pulse trace

(e.g., from AP2)

Loss Reception status

WiFi Link
Transmissions

Non-WiFi Device
Transmissions

Figure 4.6: Illustration of interference estimation in WiFiNet.

to be unsuccessful. Let L be the event of an unsuccessful transmission due
to background losses (e.g., due to weak signal) and O denote the event of an
overlap between the frame transmission and a simultaneous transmission (e.g.,
a pulse) from the non-WiFi interferer.
— (Metric 1) Impact given overlap. Conditional probability, p[I|O] is used to
measure the impact given overlap i.e., probability that a frame is unsuccessful
given an overlap with a simultaneous transmission from a non-WiFi device.
— (Metric 2) Overall impact. WiFiNet also maintains p[I], the overall impact of a
non-WiFi device. Here, p[I] is equal to p[I|O]·p[O] (when there is no overlap,
p[I|¬O] is simply 0). That is, p[I] is probability of frame loss due to the overall
activity from the non-WiFi device.

We note that p[I], the overall impact of the interferer, depends on the
probability of overlap p[O], which varies based on the link and interferer
transmission patterns. Whereas, p[I|O] is not a�ected by these transmission
patterns i.e., p[I|O] indicates the worst case impact of the interferer on the link,
which is observed when p[O]=1 (i.e., when the transmissions of link and the
interferer always happen to overlap). Next, we explain how these probabilities
are estimated by WiFiNet in real-time.

112

Interference estimation. The controller measures the total number of frames
transmitted (n) on the WiFi link of interest, the number of frames that
overlapped with the non-WiFi device’s transmissions (no) and nl

o, the number
of overlapped frames that were unsuccessful. It then computes p[O], the
probability of transmission overlap as no/n. Next, the controller computes
p[(I[L)|O] = nl

o/no i.e., the probability of an unsuccessful frame transmission
due to either background losses or interference from the non-WiFi device, given
an overlap in transmissions. It also computes the probability of frame loss
when there is no overlap from the interferer, p[L] as nl

no/nno. Here, nno

= n-no is the number of frames without overlap and nl
no is the number

of nno transmissions lost. Since L is independent of O, we have p[L|O] =

p[L|¬O] = p[L]. Also, I and L are independent events, and so we have
p[(I[L)|O] = p[I|O] + p[L]- p[I|O]·p[L]. That is,

pWiFiNet = p[I|O] =

⇣
p[(I[L)|O]- p[L]

⌘

(1 - p[L])
(4.1)

Using p[(I[L)|O] and p(L), WiFiNet controller estimates p[I|O]. Following
this, the controller also computes the overall interference p[I] as p[I|O]·p[O].

Handling overlaps from multiple non-WiFi interferers. In general, a frame
transmission may overlap with multiple simultaneous transmissions from
potential non-WiFi interferers. In this case, WiFiNet controller attributes the
frame transmission success or loss to each overlapping non-WiFi interferer.
We observed that diversity in the frame transmission times [149] as well as the
diversity in transmission times of di�erent non-WiFi devices allows WiFiNet to
distinguish the true non-WiFi interferer from the other false non-WiFi interferers
(i.e., devices that happened to transmit at the same time as the true interferers).
In particular, such a diversity allows WiFiNet to observe further transmissions
from false non-WiFi interferers that overlap with the frames but do not lead
to a frame loss. In our experience, such a transmission diversity arises due
to (i) distinct transmission characteristics of di�erent non-WiFi devices (e.g.,
frequency hopping devices typically emit short pulses at di�erent center

113

frequencies) and (ii) diversity in the usage times of non-WiFi devices [131],
where in a typical enterprise not more than 3-4 devices were found to be
simultaneously active.

Enhancements to the basic technique

Handling high duty devices operating with other devices. Transmissions
from multiple devices that always happen to overlap in time can lead to cases
where WiFiNet can make incorrect estimates. For example, WiFiNet may
identify a false interferer as a true interferer if the transmissions from the
false interferer always happen to overlap with that of a true interferer. In
our experiments, we found that such a scenario is unlikely when using pulsed
transmitters (e.g., ZigBee devices) or frequency hopping devices (e.g., Bluetooth
or FHSS cordless phones) that typically emit short pulses. However, operating
high duty devices (e.g., analog cordless phones) that continuously emit energy
alongside other non-WiFi devices will cause their transmissions to always
overlap that can lead to incorrect estimates (§4.3).

We use two refinements to the basic approach to correctly identify interfer-
ence impact of a non-WiFi interferer W operating alongside a high duty device
H: (i) when computing p[IH|OH] for a high duty device, we only consider
the frames that do not overlap with a transmission from any other non-WiFi
device. Here, p[OH] = 1 and p[IH|OH] = p[IH] and (ii) we modify Equation 4.1
to compute the estimate p[IW |OW] of a non-WiFi device W when it operates
alongside a high duty device H as

p[IW |OW] =

⇣
p[(IH [IW [L)|OW]- p[IH [L]

⌘

⇣
1 - p[IH [L]

⌘ (4.2)

Here, p[(IH [IW [L)|OW] can be computed by measuring the losses that
happen when the frames overlap with transmissions from non-WiFi device
W (as well as those from the high duty device H). Now, knowing p(IH) and
p(L), we can compute p[IW |OW]. While such an approach can handle most
cases, it cannot handle pathological cases where two high duty devices are
activated at the exact same time — since both the devices continuously emit

114

T1

F1 F2

T2

Time
synchronized

frame summary
(e.g., from AP1)

Non-deferral behavior

synchronized
merged pulse trace

(e.g., from AP2)

WiFi Link
Transmissions

Non-WiFi Device
Transmissions

Deferral behavior

Case (a) Case (b)

 0

 1

 2

 3

 4

 5

 6

Low Mid High Low Med High Low Mid High

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

Load per link (Mbps)

Hidden Exposed non-HT/non-ET

0.82

Figure 3: Throughput achieved using DET (normalized to
DCF throughputs) on a two-link topology for three different
scenarios of HT, ET and non-HT/non-ET. Low, Mid and High
represent loads of 1.2Mbps, 2.4Mbps and 6Mbps respectively.
Performance gains of DET over DCF increases with increase in
traffic load for HT and ET, while the throughput decreases for
non-HT/non-ET links under heavy loads due to path latencies.

802.11 driver

Controller

802.11 firmware

Ethernet firmware

Ethernet driver

Client

Wireless
RTT

2190
(50)

2195
(21)

AP
RTT

2550
(80)

2449
(42)

Controller
RTT

2800
(200)

2585
(110)

Soekris
(266MHz)
100 Mbps

VIA
(1.2 GHz)

GigE

Scheduler

AP

D2D
delay

160
(20)

27
(15)

Mean (Variance)
in microseconds

Wired
delay

285
(22)

95
(18)

Figure 4: Latencies on Controller-AP-client path that impacts
centralized scheduling decisions. Note that Controller RTT =
Wired delay + AP RTT .

stems from overheads and inaccuracies in scheduling downlink
packets from the controller. In spite of our considerable effort to
minimize various delays and their variance between the controller
and the APs, some delay and variance in delay persists. Through
careful instrumentation of the Atheros wireless driver (Testbed 1)
and the Intel ipw2200 wireless driver (Testbed 2), we obtained
these delays for different parts of the downlink path (Figure 4).
We found that the inaccuracies in estimating the “wired delay”
(Figure 4) was a significant contributor to scheduling inaccuracies
for traffic.
In the next section, we present our design and implemen-

tation path for CENTAUR that masks these delays and their
variability effectively using a combination of techniques — epoch-
based scheduling, fixed backoffs, packet staggering, and a hybrid
model. Through a combination of all these techniques, CENTAUR
achieves throughput gains for exposed as well as hidden terminals
scenarios, without sacrificing performance in more common cases.

4. CENTAUR DESIGN

Time

n � 1 Concurrent Transmissions

AP Y Defers

�AP X

�st

to

P1

�w = DIFS + 1
2CWmin

�w

�w �w �w

P
0

1

P2 P3

P
0

2

Pn

P
0

n�1 P
0

n

AP Y Defers�st

P1

�w �w �w

P
0

1

P2

P
0

2

Pn

P
0

n�1
P

0

n

AP X Defers

Pn�1

n Concurrent Transmissions

�w

�st

P1

�w � tx

P2

P
0

1

tx

tx

�AP Y

�AP X

�AP Y

�AP X

�AP Y

Unknown Concurrent Transmissions

Channel Free �
Channel Busy �

C
a
se

(i
ii
)

C
a
se

(i
)

C
a
se

(i
i)

AP Y Defers

to

to

Figure 5: Staggering packets by a time �st increases trans-
mission concurrency. Cases (i) and (ii) illustrate the scenarios
where the channel state remains the same for the back-off
duration �w therefore synchronizing the transmissions. Case
(iii) depicts the scenario where the gains can be unpredictable.

CENTAUR incorporates the basic scheduling approach of DET
and augments it to mitigate some of its main limitations. We
describe this by defining the three main objectives of CENTAUR
beyond what DET already provides. They are to: (i) exploit
exposed terminals without disabling carrier sensing, (ii) amortize
overheads in the scheduling process, and (iii) allow co-existence
of uplink as well as non-enterprise traffic by combining our
centralization approach with DCF. We describe how CENTAUR
meets each objective, in turn.

4.1 Exploiting exposed terminals without dis-
abling carrier sensing

A typical way to allow simultaneous communication over ex-
posed terminal links is to disable carrier sensing. However,
disabling carrier sensing for all nodes is particularly dangerous,
as it might increase the possibilities of interference. A more
intelligent approach is to implement selective carrier sensing
wherein a transmitter would carrier sense (and therefore back-off)
for non-ET links but continue with the transmission for ET links.
CMAP [26] is an example of such an approach. However, as the
authors discuss in [26], the design of such a mechanism either
requires software level modifications for both APs and clients, or
it requires a change in the existing 802.11 protocol standard. In
keeping with our design goal of requiring no changes at clients
or in the underlying 802.11 standard, we achieve simultaneous
communication over exposed terminals using an alternate approach
as follows: (i) maintain carrier sensing, (ii) use fixed back-offs, and
(iii) stagger packets destined to exposed APs. We describe the use
of (ii) and (iii) in detail, next.

T1

P1 P2

T2

Time
synchronized

frame summary
(e.g., from AP1)

Non-deferral behavior

synchronized
merged pulse trace

(e.g., from AP2)

WiFi Link
Transmissions

Non-WiFi Device
Transmissions

Deferral behavior

Case (a) Case (b)

 0

 1

 2

 3

 4

 5

 6

Low Mid High Low Med High Low Mid High

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

Load per link (Mbps)

Hidden Exposed non-HT/non-ET

0.82

Figure 3: Throughput achieved using DET (normalized to
DCF throughputs) on a two-link topology for three different
scenarios of HT, ET and non-HT/non-ET. Low, Mid and High
represent loads of 1.2Mbps, 2.4Mbps and 6Mbps respectively.
Performance gains of DET over DCF increases with increase in
traffic load for HT and ET, while the throughput decreases for
non-HT/non-ET links under heavy loads due to path latencies.

802.11 driver

Controller

802.11 firmware

Ethernet firmware

Ethernet driver

Client

Wireless
RTT

2190
(50)

2195
(21)

AP
RTT

2550
(80)

2449
(42)

Controller
RTT

2800
(200)

2585
(110)

Soekris
(266MHz)
100 Mbps

VIA
(1.2 GHz)

GigE

Scheduler

AP

D2D
delay

160
(20)

27
(15)

Mean (Variance)
in microseconds

Wired
delay

285
(22)

95
(18)

Figure 4: Latencies on Controller-AP-client path that impacts
centralized scheduling decisions. Note that Controller RTT =
Wired delay + AP RTT .

stems from overheads and inaccuracies in scheduling downlink
packets from the controller. In spite of our considerable effort to
minimize various delays and their variance between the controller
and the APs, some delay and variance in delay persists. Through
careful instrumentation of the Atheros wireless driver (Testbed 1)
and the Intel ipw2200 wireless driver (Testbed 2), we obtained
these delays for different parts of the downlink path (Figure 4).
We found that the inaccuracies in estimating the “wired delay”
(Figure 4) was a significant contributor to scheduling inaccuracies
for traffic.
In the next section, we present our design and implemen-

tation path for CENTAUR that masks these delays and their
variability effectively using a combination of techniques — epoch-
based scheduling, fixed backoffs, packet staggering, and a hybrid
model. Through a combination of all these techniques, CENTAUR
achieves throughput gains for exposed as well as hidden terminals
scenarios, without sacrificing performance in more common cases.

4. CENTAUR DESIGN

Time

n � 1 Concurrent Transmissions

AP Y Defers

�AP X

�st

to

P1

�w = DIFS + 1
2CWmin

�w

�w �w �w

P
0

1

P2 P3

P
0

2

Pn

P
0

n�1 P
0

n

AP Y Defers�st

P1

�w �w �w

P
0

1

P2

P
0

2

Pn

P
0

n�1
P

0

n

AP X Defers

Pn�1

n Concurrent Transmissions

�w

�st

P1

�w � tx

P2

P
0

1

tx

tx

�AP Y

�AP X

�AP Y

�AP X

�AP Y

Unknown Concurrent Transmissions

Channel Free �
Channel Busy �

C
a
se

(i
ii
)

C
a
se

(i
)

C
a
se

(i
i)

AP Y Defers

to

to

Figure 5: Staggering packets by a time �st increases trans-
mission concurrency. Cases (i) and (ii) illustrate the scenarios
where the channel state remains the same for the back-off
duration �w therefore synchronizing the transmissions. Case
(iii) depicts the scenario where the gains can be unpredictable.

CENTAUR incorporates the basic scheduling approach of DET
and augments it to mitigate some of its main limitations. We
describe this by defining the three main objectives of CENTAUR
beyond what DET already provides. They are to: (i) exploit
exposed terminals without disabling carrier sensing, (ii) amortize
overheads in the scheduling process, and (iii) allow co-existence
of uplink as well as non-enterprise traffic by combining our
centralization approach with DCF. We describe how CENTAUR
meets each objective, in turn.

4.1 Exploiting exposed terminals without dis-
abling carrier sensing

A typical way to allow simultaneous communication over ex-
posed terminal links is to disable carrier sensing. However,
disabling carrier sensing for all nodes is particularly dangerous,
as it might increase the possibilities of interference. A more
intelligent approach is to implement selective carrier sensing
wherein a transmitter would carrier sense (and therefore back-off)
for non-ET links but continue with the transmission for ET links.
CMAP [26] is an example of such an approach. However, as the
authors discuss in [26], the design of such a mechanism either
requires software level modifications for both APs and clients, or
it requires a change in the existing 802.11 protocol standard. In
keeping with our design goal of requiring no changes at clients
or in the underlying 802.11 standard, we achieve simultaneous
communication over exposed terminals using an alternate approach
as follows: (i) maintain carrier sensing, (ii) use fixed back-offs, and
(iii) stagger packets destined to exposed APs. We describe the use
of (ii) and (iii) in detail, next.

Figure 7: Illustration of carrier sensing estimation in AirWiz.

that AirWiz is correctly able to identify the true interferer.
XXXX downlink conflicts only (even for non-WiFi)XXX

Interactions with external interference. External in-
terference can be caused by non-WiFi devices that are
not a part of the enterprise or by other non-enterprise
wireless tra�c (e.g., tra�c from nearby WiFi networks).
In both these cases, interference estimation can proceed
as is if at least one of the APs is able to capture the pulse
(or frame) transmissions from the interference source.
However, if the transmissions from the non-WiFi device
(or the external WiFi transmitter) are not captured by any
AirWiz AP, then AirWiz controller would not be able to
identify the source of interference.

2.5 Carrier sensing estimation
Similar to the procedure used for interference analysis,
AirWiz controller computes the carrier sensing relation-
ships by correlating the frame transmissions from the
WiFi transmitter and pulse transmissions from the non-
WiFi device. Figure 7 shows two cases of interest.
Case(a) when the WiFi transmitter is not defering to the
non-WiFi device, AirWiz controller will observe several
instances where the frame transmission starts while the
pulse transmission is in progress. Case(b) When the
WiFi transmitter is indeed defering to the non-WiFi
device, AirWiz controller will not observe instances where
frame transmission starts while the pulse transmission
is in progress. However, this condition alone is not
enough to infer that the WiFi transmitter is defering to
the non-WiFi device, as it may happen that the WiFi
transmitter did not have any packets to send while the pulse
transmission was in progress i.e., the WiFi transmitter
did not contend for the medium. To identify the deferral
instances, we use a heuristic similar to the prior work on
carrier sense estimation between WiFi links [6, 8]: the
controller identifies the deferring frames as those where
the di�erence between the pulse transmission end time
and the frame transmission start time is within a certain
threshold �w. Here, �w is the maximum time spent by the
WiFi transmitter performing back-o� and is set to 28+320
µs (DIFS + Max back-o� period for 802.11g).

The controller then computes the fraction � = nd
nd+nnd

where nnd is the number of Case (a) frame transmission
instances that indicate non-deferral behavior and nd is
the number of Case (b) instances that indicate deferral
behavior. If the transmitter is indeed deferring, � would
be close to 1. Whereas, if the transmitter is not deferring to
the non-WiFi device, the di�erence in the pulse and frame
start transmission times would be uniformly distributed
in the interval of [0, �p + �w], where �p is the duration
of the pulse. That is, we expect � ⇡ �w

�p+�w
. Typically,

�p � �w, therefore � is low for cases of non-deferral (e.g.,
for �p for microwave ovens, cordless phones, and bluetooth
devices is 8 ms, 1.25 ms, and 625 µs respectively). In our
experiments, we observed that a threshold of 0.8 (i.e.,
checking if � > 0.8) was able to identify deferring WiFi
transmitters while keeping the false positives low.

I

2.6 Localizing a non-WiFi device instance
We wish to develop a real-time localization scheme that is
computationally e�cient, imposes zero profiling overhead,
and physically locates the non-WiFi device instance of
unknown transmit power using a completely passive
approach. In AirWiz, we achieve the above goals by
developing RF propagation model based probabilistic
localization algorithms to physically locate the non-WiFi
device.

2.6.1 Model-based localization
Let r̂ = [r̂0, . . . , r̂N�1] be the mean RSS vector of all the
pulses/bands present in the cluster assigned to a non-WiFi
device instance (e.g., a Bluetooth device or an analog
phone instance). For the purposes of localization, we only
consider the APs with valid received powers (i.e., r̂i 6= �).
We divide the entire region into grids of size 1 ⇥ 1 meters.
Let i denote the grid location of APi. Let dij denote
the distance between grids i and j. Let P (l|̂r) denote
the probability of the non-WiFi device being at location
l, given that the received power vector is r̂. We wish to
compute the grid location l such that P (l|̂r) is maximized
i.e., we want argmaxlP (l|̂r). Using Bayes’ theorem,
P (l|̂r) can be written as P (r̂|l).P (l)/P (r̂). Assuming
all locations are equi-probable, and since P (r̂) is constant
for all l, we have argmaxlP (l|̂r) = argmaxlP (r̂|l), which
can be calculated as argmaxl

�N�1
i=1 P (r̂i|l) (assuming

independence). This can be re-written as

argmaxl

N�1�

i=1

logP (r̂i|l) (4)

Case of known transmit power. If the non-WiFi device
instance is at a grid l, then the expected received power
at APi (located at grid i) can be modeled as a normal
distribution N (µil, �2), where the expected mean of the
received power can be modeled as µil = Ro�10�log10dil.

8

Figure 4.7: Illustration of carrier sensing estimation in WiFiNet.

energy, nothing useful can be said about the impact of each device (§4.3). If
however, the interference impact of one of the devices is known, then that of the
other can be computed using the above formulation. As we show later in §5.7,
typically, diversity in transmission times of non-WiFi devices, coupled with
the above refinements allows WiFiNet to correctly identify the true non-WiFi
interferer in realistic wireless settings.

Quantifying impact at di�erent 802.11 rates. The impact of a non-WiFi
interferer on a WiFi link also depends on the PHY rate being used by the
WiFi transmitter. To account for this, WiFiNet controller records the overlaps
and losses separately for each di�erent PHY rate, and computes a separate
interference estimate for each rate. This helps quickly the estimate interference
impact at each PHY rate when using dynamic bit rate adaptation as opposed
to high-overhead bandwidth tests that require controlled experiments at each
PHY rate to estimate the same [149].

Handling sender-side interference. Similar to the procedure used for inter-
ference analysis, WiFiNet controller can infer whether a WiFi transmitter is
deferring to a non-WiFi device by correlating the WiFi frame transmissions

115

with the non-WiFi pulse transmissions. Figure 4.7 shows two cases of
interest. Case(a) when the WiFi transmitter is not deferring to the non-WiFi
device, WiFiNet controller will observe several instances where the frame
transmission starts while the pulse transmission is in progress. Case(b) When the
WiFi transmitter is indeed deferring to the non-WiFi device, WiFiNet controller
will not observe instances where frame transmission starts while the pulse
transmission is in progress. However, this condition alone is not enough to
infer that the WiFi transmitter is deferring to the non-WiFi device, as it may
happen that the WiFi transmitter did not have any packets to send while the
pulse transmission was in progress i.e., the WiFi transmitter did not contend
for the medium. To identify the deferral instances, we use a heuristic similar
to the prior work on carrier sense estimation between WiFi links [123, 149]:
the controller identifies the deferring frames as those where the di�erence
between the pulse transmission end time and the frame transmission start time
is within a certain threshold �w. Here, �w is the maximum time spent by the
WiFi transmitter performing back-o� and is set to 28 + 320 µs (DIFS + Max
back-o� period for 802.11g).

The controller can now compute the fraction �cs = nd

nd+nnd
where nnd is

the number of Case (a) instances that indicate non-deferral behavior and nd is the
number of Case (b) instances that indicate deferral behavior. If the transmitter
is indeed deferring, �cs would be close to 1. Whereas, if the transmitter is not
deferring to the non-WiFi device, the di�erence in the pulse and frame start
transmission times would be uniformly distributed in the interval [0, �p + �w],
where �p is the duration of the pulse. That is, we expect �cs ⇡ �w

�p+�w
. Typically,

�p > �w, therefore�cs is low for cases of non-deferral (e.g., for �p for microwave
ovens, cordless phones, and Bluetooth devices is 8 ms, 1.25 ms, and 625 µs
respectively). In our experiments, using a threshold of �cs > 0.8 was able to
correctly identify deferring WiFi transmitters (§4.3).

Extensions to handle WiFi interference. In general, WiFi links can also
experience interference from other WiFi links. We extend our basic approach to
measure the overlaps between frame transmissions on a particular WiFi link and
the frame transmissions on other WiFi links to compute the probability of frame

116

loss due to hidden interference [149]. In §4.3, we experiment with non-WiFi
interferers operating alongside hidden terminals and show that WiFiNet is
correctly able to identify the true interferer.

Interactions with external interference. External interference can be caused
by non-WiFi devices that are not a part of the enterprise or by other non-
enterprise wireless tra�c (e.g., tra�c from nearby WiFi networks). In both
these cases, interference estimation can proceed as is if at least one of the APs is
able to capture the pulse (or frame) transmissions from the interference source.
However, if the transmissions from the non-WiFi device (or the external WiFi
transmitter) are not captured by any WiFiNet AP, then WiFiNet controller would
not be able to identify the source of interference.

Localizing a non-WiFi device instance

WiFiNet uses a computationally e�cient, real-time localization scheme that
imposes zero profiling overhead, and physically locates the non-WiFi device
instance of unknown transmit power using a modeling based approach. Below,
we explain our localization models.

Model-based localization

Let r̂ = [r̂0, . . . , r̂N-1] be the mean RSS vector of all the pulses present in
the cluster assigned to a non-WiFi device instance. For localization, we only
consider the APs with valid received powers (i.e., r̂i 6= �). We divide the entire
region into grids of size 0.25 ⇥ 0.25 meters. Let i denote the grid location of
APi. Let dij denote the distance between grids i and j. Let P(l|r̂) denote the
probability of the non-WiFi device being at location l, given that the received
power vector is r̂. We wish to determine the grid location l such that P(l|r̂)
is maximized i.e., we want argmaxlP(l|r̂). Using Bayes’ theorem, P(l|r̂) can
be written as P(r̂|l).P(l)/P(r̂). Assuming all locations are equi-probable, and
since P(r̂) is constant for all l, we have argmaxlP(l|r̂) = argmaxlP(r̂|l), which
can be calculated as argmaxl

QN-1
i=1 P(r̂i|l) (assuming independence [166]). Put

another way, the grid location l where the non-WiFi device is most likely present

117

-80

-70

-60

-50

-40

-30

-20

 0 5 10 15 20 25 30 35

O
b

se
rv

e
d

 R
S

S
I

(d
B

m
)

Distance from source (in meters)

Observed RSSI (dBm)
Modeled RSSI (Mean)

+3 Stdev
-3 Stdev

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

-64 -62 -60 -58 -56 -54 -52 -50 -48

P
D

F

RSSI (in dBm)

Observed RSSI
Modeled RSSI

Figure 4.8: (left) Path loss model created by a WiFiNet APs using WiFi
transmissions (right) PDF of actual RSSIs observed at a sample location and
the model created using a normal distribution.

can be computed using,

argmaxl
N-1X

i=1
logP(r̂i|l) (4.3)

Case of known transmit power (Model-TP). If the non-WiFi device instance
is at a grid l, then the expected received power at APi (located at grid i) can
be modeled as a normal distribution N(µil,�2), where � is the shadowing
variable, and µil is the expected mean of the received power that can be modeled
as µil = Ro-10�log10dil. Here, � is the pathloss exponent and Ro is the power
received from the non-WiFi device when placed at a distance of 1 meter from
an AP (referred to as transmit power). How can we estimate � for the non-WiFi
device? WiFiNet APs derive � using WiFi frames i.e., each WiFiNet AP uses the
data packets or beacons transmitted by neighboring WiFiNet APs to model
the propagation loss characteristics (Figure 4.8) — since both WiFi devices and
non-WiFi devices operate on the frequency, the propagation loss characteristics
of their transmissions are similar. WiFiNet APs also compute �2, by measuring
the variance in the received power values (Figure 4.8 (right)). Knowing µil,�
and r̂i, the controller can compute P(r̂i|l) using,

P(r̂i|l) =
1

�
p

2⇡
e-(r̂i-µil)

2/2�2 (4.4)

118

1

0.8

0.6

0.4

0.2
0 N
or

m
. P

ro
ba

bi
lit

y

0 10 18 24 36
Meters

0

10

18

24

36

M
et

er
s

1

0.8

0.6

0.4

0.2
0 N

or
m

. P
ro

ba
bi

lit
y

AP2

AP1 AP0

AP4

AP5

AP3

AP6

AP7 1

2 3

actual

predicted

Figure 4.9: (top, left) Deployment 1 comprising 8 APs. (rest of the sub-figures)
FHSS cordless phone device is placed at the starred location. Grid probabilities
for predicted phone locations after processing 1, 6 and all AP pairs when using
Model-UTP algorithm.

Intuitively, each APi propagates a probability that is maximum around a
circle with center at grid i and radius equal to µil. If the transmit power Ro of
the device is known, plugging in P(r̂i|l) in Equation 4.3 and iterating over all
the grids and APs, we can compute the grid l with the maximum probability
of finding the device.

Case of unknown transmit power (Model-UTP). If Ro is not known, we can
factor it out by considering each pair of APs: if the non-WiFi device is at
a grid l, the expected di�erence in the mean received powers at APi and APj

can be modeled as �(i, j, l) = µil - µjl = 10�log10(djl/dil), and expected

119

di�erence in the powers follows a normal distribution with twice the variance:
N(�(i, j, l), 2�2) [29]. Now, knowing (r̂i - r̂j), we can compute P((r̂i - r̂j)|l) as

P(r̂i, r̂j|l) =
1

2�
p

2⇡
e-(r̂i-r̂j-�(i,j,l))

2
/4�2 (4.5)

and we can localize the non-WiFi device by finding

argmaxl
X

i,j
logP

�
(r̂i - r̂j)|l

�
(4.6)

i.e., each AP pair propagates a probability P((r̂i - r̂j)|l) on every grid l. The
probabilities are high for the grids where the di�erence in received powers
(r̂i-r̂j) is close to (µil-µjl). After processing all AP pairs, the algorithm outputs
the grid l with the maximum probability.

— Example. Figure 4.9 (top, left) shows a deployment of 8 APs along with
the location of an FHSS cordless phone (shown using a star). The rest of the
figures show how the grid probabilities indicating the location of the phone
change after processing 1, 6 and all possible AP pairs.

Alternative localization methods

We also implemented several other localization schemes ranging from simple
methods such as (i) Strongest-AP, picking the AP with the strongest received
power as the device’s location, and (ii) Centroid, picking the centroid of three
APs with the strongest received powers, to more sophisticated approaches
like (iii) an Iterative approach that performs an exhaustive search over all
parameters (�,�,Ro, l) to find the grid l with the maximum probability, and
(iv) a Fingerprinting approach where we profile the environment using WiFi
transmissions — we transmitted WiFi packets using a laptop placed at several
locations, and at each location WiFiNet APs measured the signal strength to
derive the RSS vector. We then normalize the vectors to nullify the e�ect of a the
transmit power of the laptop and derive a location’s fingerprint. Localization
is performed by measuring the RSS vector (after normalization) of a non-WiFi
device and finding the fingerprint that is the closest match. In §5.7, we compare
our model based localization algorithms to all the above methods.

120

�.� ������������ �������

The goal of our evaluation is to systematically benchmark WiFiNet’s perfor-
mance in diverse scenarios, and demonstrate its utility in realistic network
settings. We break our evaluation into four parts: First, we demonstrate
WiFiNet’s ability in accurately characterizing the impact of di�erent non-WiFi
devices in a variety of scenarios. Second, we evaluate WiFiNet’s accuracy in
physically locating the non-WiFi interferers. Third, we emulate a non-WiFi
interference prone enterprise WLAN scenario and show WiFiNet’s utility in
such a setting. Fourth, we benchmark di�erent components of WiFiNet and
highlight cases where WiFiNet’s performance could degrade. We start by
presenting the details of our implementation.

Implementation. We implemented WiFiNet using commodity WiFi APs
equipped with Atheros AR9280 wireless cards that are connected to a central
controller (Linux PC with 3.33 GHz dual core Pentium IV, 4 GB DRAM) over the
Ethernet. Our implementation consists of few hundred lines of C code and 9800
lines of Python scripts that implement non-WiFi device detection functionality
at the APs [131], perform synchronization across multiple APs, and implement
clustering algorithms, interference analysis and device localization methods at
the controller.

Evaluation set up. We experiment with devices in 2.4 GHz spectrum, and
our current prototype has been tested with 5 di�erent non-WiFi devices types
: (i) high duty devices (analog cordless phones), (ii) fixed-frequency pulsed
transmitters (ZigBee devices), (iii, iv) two types of frequency hopping devices
(FHSS cordless phones, Bluetooth devices), and (v) broadband interferers
(microwave ovens). We run our experiments on two di�erent deployments:
(i) Deployment 1 used 8 APs (Figure 4.9) and (ii) Deployment 2 used 4 APs
(Figure 4.20). We experiment with di�erent non-WiFi device locations, 802.11
rates, channel conditions and tra�c patterns: (i) UDP with saturated tra�c as
well as reduced tra�c loads, and (ii) replay of real HTTP/TCP wireless traces
(§4.3). Unless otherwise stated, we run WiFi links on 802.11 rate to 6 Mbps and

121

use backlogged UDP tra�c with a packet size of 1400B.

Ground truth. The conventional approach for measuring interference between
WiFi links is to use bandwidth tests [71, 149] to determine the ground truth
about the impact of a WiFi interferer on a WiFi link. We follow a similar
approach to determine the impact of a non-WiFi interferer on a WiFi link: we
perform controlled experiments where we send backlogged tra�c on the WiFi
link and (i) measure p[L], the loss rate when the interferer is inactive, and (ii)
measure p[I[L], the loss rate when the interferer is active. However, unlike WiFi
bandwidth tests wherein both the interferer and the link are using backlogged
tra�c and are active for the entire duration, a non-WiFi interferer may not
be active all the time, leading to the case where p[O] may be less than 1. For
example, while high duty devices like analog cordless phones have p[O] = 1,
other devices like FHSS cordless phones may only hop onto the WiFi channel
of interest for a particular duration (when the WiFi link is backlogged, it turns
out that p[O] = 0.28 for an FHSS cordless phone), or devices like microwave
ovens have a characteristic duty cycle of 50% (i.e., p[O] = 0.5). Therefore, impact
given overlap, p[I|O] has to computed as follows. p[I [L] can be expressed as
p[(I[L)|O] · p[O] + p[(I[L)|¬O] · p[¬O]. Now, p[(I[L)|¬O] is equal to p[L], and
expanding p[(I[L)|O] in terms of p[I|O] and p[L], followed by a bit of algebra
gives us

pActual = p[I|O] =

⇣
p[I[L]- p[L]

⌘

⇣
(1 - p[L])·p[O]

⌘ (4.7)

Using controlled experiments, we measure p[L] (loss under isolation) and
p[I[L] (loss when the non-WiFi device is active). Now, knowing p[O], we
can measure p[I|O] and subsequently compute the overall impact, p[I]. For
experiments involving multiple devices, we measure the ground truth by
activating only one device at a time and measuring its impact on the link.
We note that the same ground truth (p[I|O]) is valid when multiple devices
are activated simultaneously (the overall impact p[I] may change, but p[I|O]

122

remains the same). WiFiNet, however, computes p[I|O] estimates in presence of
multiple, simultaneously active devices and WiFi links using any tra�c load.

We further note that controlled experiments such as bandwidth tests require
high overhead to compute the interference estimates for all links in the network.
In operational networks, doing so may not be possible as such an approach
requires network downtime where all the other WiFi links (and non-WiFi
interferers) have to be silenced [149]. WiFiNet, on the other hand does not place
any such requirements (e.g., backlogged tra�c on links or network downtime),
and can compute the estimates in real-time by passively accumulating frame
and pulse transmission information.

Metrics used. For interference estimation, we compare WiFiNet’s real-time,
passive interference estimate of “impact given overlap” (p[I|O]) with that
obtained using controlled experiments wherein the device is activated in
isolation (ground truth). For localization, we report the di�erence in the actual
and the predicted location of the non-WiFi device (i.e., localization error) in
meters.

Validating Interference Estimates

We start by validating WiFiNet’s interference estimates across a variety of
scenarios.

Single interferer scenarios

Method. We experiment with a total of 165 link-interferer scenarios comprising
4 non-WiFi devices — a microwave oven, an analog cordless phone, an FHSS
cordless phone and a ZigBee transmitter. We activate each device in turn, and
place it at di�erent distances to vary the interference on the monitored WiFi link.
We compute the ground truth (actual p[I|O]) using controlled experiments that
measure the link loss rate when the device is active and that when the device is
inactive. Next, we randomly activate and de-activate the non-WiFi device while
the WiFi link is active and measure WiFiNet’s real-time estimate.

123

 0

 0.25

 0.5

 0.75

 1

 0 0.2 0.4 0.6 0.8 1

P
(I

/O
)

W
iF

iN
e
t

P(I/O) Actual

ZigBee
Analog Phone
FHSS Phone

Microwave
y=x

 0

 20

 40

 60

 80

 100

-0.5 -0.25 0 0.25

C
D

F

Error in P(I/O)

Analog Phone
ZigBee

FHSS Phone
Microwave

Figure 4.10: (left) Interference estimates obtained using controlled measure-
ments (ground truth) and WiFiNet on 165 link-interferer scenarios comprising 4
di�erent classes of devices. (right) CDF of error in interferer estimates is within
±0.1 for 95% of the cases.

Results. Figure 4.10 (left) shows that WiFiNet correctly estimates a non-WiFi
device’s impact — across all device types and di�erent amounts of interference
(ranging from weak to strong), WiFiNet’s estimates lie close to the ground truth
(the points lie close to y = x). Figure 4.10 (right) shows that the overall error
in WiFiNet’s estimate is within ±0.1 for more than 95% of the cases for all 4
devices.

Multiple interferers of di�erent types

Method. In each run, we choose upto 4 random devices of di�erent types, place
them at random locations, randomly activate and de-activate them, creating
scenarios when these devices are simultaneously active and measure WiFiNet’s
interference estimate for each device. For ground truth, we activate only
one device at a time and perform controlled measurements. We repeat the
experiments for di�erent combinations of devices and locations.

124

 0

 0.25

 0.5

 0.75

 1

Analog FHSS ZigBee Bluetooth

P
(I

/O
)

 Phone Phone

WiFiNet
Actual

 0

 20

 40

 60

 80

 100

-0.5 -0.25 0 0.25 0.5

C
D

F

Error in P(I/O)

One
Two

Three
Four

Figure 4.11: Accurately identifying impact of each interferer in the presence of
multiple non-WiFi devices. (left) example scenario showing WiFiNet is able to
identify the strong interferers (analog cordless phone, FHSS phone) and weak
interferers (ZigBee and Bluetooth devices) accurately. (right) CDF of error in
inteference estimates in the presence of multiple interferers.

Results. Figure 4.11 (left) shows a particular run which comprised two
strong interferers (analog phone and FHSS cordless phone) and two weak
interferers (ZigBee and Bluetooth devices). We find that WiFiNet is not only
able to accurately identify the strong and weak inteferers, but is also able to
discern the exact impact of each of these devices in spite of them being active
simultaneously. Figure 4.11 (right) shows the CDF of error in interference
estimates for combinations of 2, 3 and 4 devices across 60 runs. While the
overall error slightly increases with increase in the number of devices, the error
is within ±0.15 for more than 85% of the cases even when operating 4 devices.
The slight increase in error is due to increased overlap in the transmissions
from multiple devices. We benchmark the e�ect of overlapping transmissions
in §4.3.

Multiple interferers of the same type

Method. We now evaluate WiFiNet’s performance when simultaneously
operating multiple devices of the same type. We use 4 FHSS cordless phone
devices — one base/handset pair is placed close to the WiFi link (to create

125

 0
 0.25
 0.5

 0.75
 1

Base1 Handset1 Base2 Handset2

P
[I
/O

]

 (4 simultaneous FHSS cordless phone devices)

WiFiNet
Actual

(closer to the link) (farther from the link)

Figure 4.12: WiFiNet’s accuracy in the presence of multiple non-WiFi devices
of the same type. Out of 4 FHSS cordless phone devices, 2 are placed close to
the link, and 2 are placed farther away.

Two simultaneous high duty devices
(w/ diversity in device active times)(Devices have same start and end times)

 0
 0.25

 0.5
 0.75

 1

P
[I

/O
] WiFiNet

ActualError

Analog Phone 1 Analog Phone 2 Analog Phone 1 Analog Phone 2

Figure 4.13: (left) Switching on and o� 2 high duty devices (analog phones) at
the exact same time causes WiFiNet to incorrectly identify the interferers. (right)
Allowing diversity resolves the issue.

strong interference), whereas the other pair is placed farther away (to create
weak interference).
Results. Figure 4.12 shows that WiFiNet is able to (i) accurately identify all 4
FHSS cordless phone devices using clustering mechanisms (benchmarked in
§4.3) and (ii) accurately identify strong interferers (base/handset pair placed
close to the link) and weak interferers (base/handset pair placed farther away
from the link).

Case of multiple high duty devices

Method. We place an analog phone near the WiFi link (strong interferer) and
another analog phone (operating at a frequency di�erent from the first one),
farther away from the WiFi link (weak interferer). We show results for two

126

 0
 0.25
 0.5

 0.75
 1

P
(I

|O
)

AirWiz
Actual

WiFi Interferer ZigBee ZigBee

Strong WiFi Interferer (Hidden Terminal)
with Weak non-WiFi Interferer

Weak WiFi Interferer
with Strong non-WiFi Interferer

WiFiNet

WiFi Interferer

Figure 4.14: Estimating the interference impact of a WiFi interferer (hidden
terminal) and a non-WiFi interferer (ZigBee device).

cases: (i) we switch activate and de-activate both the phones at the exact same
time, and (ii) we activate the second phone 5 seconds after the first phone.
Results. Figure 4.13 (left) conveys that while WiFiNet is able to identify two
di�erent phones (by virtue of their di�erent center frequencies), it incorrectly
tags both the phones as strong interferers. Since both the analog phones are
switched on and o� at the same time, and they are high duty devices that are
always-on (i.e., they continuously emit energy), WiFiNet cannot distinguish
between the interference impact of the two devices. Figure4.13 (right) shows a
more practical scenario where introducing a little diversity (i.e., a lag of 5 secs
in the device start times) allows WiFiNet to correctly estimate the interference.

Mix of WiFi and non-WiFi interference

Method. We evaluate WiFiNet’s accuracy when simultaneously operating a
WiFi interferer (hidden terminal) and a non-WiFi interferer (ZigBee device).
The interferers are placed at di�erent distances from the monitored WiFi link to
create two scenarios: (i) strong WiFi interferer with a weak non-WiFi interferer
(ii) weak WiFi interferer with a strong non-WiFi interferer. The WiFi interferer’s
tra�c follows an http on-o� model for with sleep and active times derived from
a wireless trace [137], whereas the ZigBee device used a constant bit rate. As
before, to measure ground truth, we operate the devices in isolation.
Results. Figure 4.14 shows the results. In case (i), WiFiNet finds that losses
are more likely to happen when the monitored link’s frames overlap with WiFi

127

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60
Im

p
a

ct
 o

n
 c

lie
n

t
Time (sec)

 0

 2

 4

 6

 0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Time (sec)

actual impact
p[I]

Delivery in isolation

impact given overlap
P[I/O]

WiFiNet AP
(transmitter)

ZigBee Interferer
WiFi client
(receiver)

Direction of
client movement

Figure 4.15: WiFiNet’s ability to track the changing interference patterns for
a client that is moving away from a ZigBee interferer. (left) instantaneous
throughput at the client (right) delivery in isolation (i.e., in absence of overlap),
impact given overlap (p[I|O]) and actual impact (p[I]) are shown.

interferer’s frames, whereas in case (ii), the losses show a high correlation when
frames overlap with non-WiFi device’s transmissions, resulting in accurate
estimates for both cases.

Dynamic interference settings

Handling WiFi client mobility. We now evaluate WiFiNet’s ability in updating
the interference estimates that reflect the changing impact of a non-WiFi
interferer due to client mobility. We use the set up shown in Figure 4.15 (top)
where in a WiFi client is moving away from a ZigBee interferer. In the figure,
plot on the left shows the instantaneous throughput at the client increases as it
moves away from the interferer. The plot on the right shows WiFiNet’s ability to
track (i) delivery in isolation (i.e., in the absence of overlap) that shows a slight
increase, (ii) the impact given overlap p[I|O], which rapidly drops down from
0.98 to 0.2 as the client moves farther away and (iii) the actual impact p[I], owing
to the probability of overlap, drops from 0.3 to 0.12. The decrease in the actual

128

 0

 0.5

 1

6 12 24 36 48 54

P
[I

/O
]

PHY Data rate (Mbps)

 0

 0.25

 0.5

200 600 1000 1400

P
[I

/O
]

Packet size (Bytes)

 0
 0.25
 0.5

 0.75
 1

6 12 24 36 48 54

P
[I

/O
]

PHY Data rate (Mbps)

WiFiNet
Actual

 0

 0.25

 0.5

200 600 1000 1400

P
[I

/O
]

Packet size (Bytes)

WiFiNet
Actual

 0
 0.25
 0.5

 0.75
 1

6 12 24 36 48 54

P
[I

/O
]

PHY Data rate (Mbps)

WiFiNet
Actual

 0

 0.25

 0.5

200 600 1000 1400

P
[I

/O
]

Packet size (Bytes)

WiFiNet
Actual

Figure 4.16: (i) Impact of PHY rate and (ii) packet size on p[I|O] in presence of
a ZigBee interferer. For (i), packet size is fixed at 1400 bytes, and for (ii), rate
is fixed at 12 Mbps. p[I|O] rises sharply with rate, the change in p[I|O] with
packet size is less pronounced.

impact closely matches with the increase in throughput confirming WiFiNet’s
utility in understanding client performance in dynamic wireless environments.

Variable 802.11 rates and packet sizes. We evaluate WiFiNet’s ability to
dynamically track the changing interference estimates due to changes in (i)
PHY rates and (ii) packet sizes used by the links. For ground truth, we
perform controlled experiments at each PHY rate, whereas for WiFiNet we
enable dynamic rate adaptation using SampleRate and capture the estimates in
real-time. Figure 4.16 (left) shows that WiFiNet’s estimates derived from rate
adaptation closely match the ground truth. Since higher rates require higher
SINR to decode a frame successfully, impact of the interferer increases with
the increase in rate. Next, we fix the PHY rate (to 12 Mbps) and repeat our
experiments for di�erent packet sizes. Figure 4.16 (right) shows that WiFiNet is
correctly able to track the slight increase in the interferer’s impact at larger
packet sizes.

Replay of wireless traces. We evaluate WiFiNet’s performance using publicly
available Sigcomm 2004 tra�c traces [137]. We partitioned the trace into heavy,
medium, and light periods corresponding to periods with airtime utilization of
more than 50%, between 20 - 50%, and less than 20% respectively, at di�erent
times of the conference [149]. The HTTP/TCP sessions are then replayed on

129

Heavy Profile Medium Profile Light Profile

Strong WeakMed.
Interferers

Strong WeakMed. Strong WeakMed.
 0

 0.25
 0.5

 0.75
 1

P
[I
|O

]

Figure 4.17: WiFi links replay real HTTP/TCP wireless traces (heavy, medium,
and light profiles) in presence of strong, medium and weak interferers.
WiFiNet’s estimates closely match the ground truth in each case. The slight
mismatch is due to the variability in packet sizes as the ground truth was
measured using 1400 byte packets, whereas the traces comprised packets of
di�erent sizes.

Delay Min. 25th %ile. median 75th %ile Max.
Convergence time 319 ms 549 ms 972 ms 1.7 sec 3.6 sec

Table 4.1: Distribution of convergence time for WiFi links replaying HTTP/TCP
wireless traces (heavy, medium and light profiles) in presence of an FHSS
cordless phone interferer.

WiFi links (using the mechanism described in [45]) in the presence of strong,
medium and weak ZigBee interferers. Each client emulated the behavior
of one real client from the trace, faithfully imitating its HTTP transactions.
Figure 4.17 shows that that WiFiNet’s interference estimates are close to that
of the ground truth across di�erent tra�c profiles and interfering scenarios.
The slight di�erences between the estimates are due to the variability in packet
sizes in the real traces, compared to the ground truth that was measured using
1400 byte packets. We also show the CDF of time taken by WiFiNet to converge
to the right p[I|O] estimates in Table 4.1 (median < 1 sec). We benchmarks the
factors a�ecting convergence time in §4.3.

Accuracy of Localization

We now evaluate our localization algorithms.

130

Algorithm Min. error 25th %ile. median 75th %ile Max error
Iterative 0.3m 0.8m 2.1m 4m 10m
Model-TP 0.3m 0.3m 1.3m 3m 8m
Model-UTP 0.3m 0.8m 1.3m 4m 11m

Table 4.2: Overall localization error for an analog cordless phone and an FHSS
phone when placed at random locations in deployment 2.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8

C
D

F

Error (in meters)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

C
D

F

Error (in meters)

Model-UTP

Iterative

Centroid

Model-TP

Fingerprint

Model-TP

Centroid

Fingerprint

Model-UTP

Iterative

Figure 4.18: Accuracy of localization for (left) FHSS cordless phone and (right)
analog cordless phone for deployment 1 (Figure. 4.9).

Scheme Min. error 25th %ile. median 75th %ile Max error
Uniform � 0.2m 1.9m 3.6m 7m 12m
per-AP � 0.2m 2.0m 1.7m 2.3m 6.7m

Table 4.3: Overall localization error for the Model-TP algorithm with (i) uniform
and (ii) per-AP path loss exponents (deployment 1).

Accuracy across di�erent classes of devices

Figure 4.18 shows CDF of localization error for two non-WiFi device types: (i)
frequency-hopping cordless phone and (ii) high duty, analog cordless phone,
when using deployment 1 with 8 APs shown in Figure 4.9. Devices were placed
at random locations and for each location, we compute the di�erence in the
predicted and actual location for 5 di�erent localization schemes (§4.2). We find
that all algorithms perform well, resulting in a median error of 1-3 meters for

131

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

C
D

F

Error (in meters)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

C
D

F

Error (in meters)

All APs

3 APs

7 APs

5 APs

6 APs

4 APs

Centroid

Fingerprint

Model-TP

Model-UTP

Iterative

Figure 4.19: Localization accuracy for FHSS cordless phone (left) for subsets of
4 APs from deployment 1 (right) using Model-UTP when the number of APs
was decreased from 8 to 3.

the FHSS phone, and 1.7-4 meters for the analog phone. Here, WiFiNet’s
modeling based localization approaches perform similar to the Iterative
approach that employs an exhaustive search, and is better than Fingerprinting
(§4.2) that incurs a profiling overhead. Accuracy of Fingerprinting, however,
can be improved by increasing the density of fingerprints (0.05/sq.meter in this
case) at the cost of a higher profiling overhead.

E�ect of AP density

In each run, we randomly chose a subset of 4 APs (out of the 8 APs in deployment
1) and compute the localization error. We repeat the experiment for 25 runs
and report the average error in Figure 4.19 (left). We observe that when the
density of the AP deployment is sparse, the performance of Centroid algorithm
worsens (median error of 8 meters) compared to the other algorithms (median
error of 2.5 to 4.8 meters). Figure 4.19 (right) shows the degradation in the
performance of Model-UTP, when the number of APs is reduced from 8 to 3.
The median error only increases from 1 meter to 4 meters indicating the better
performance of modeling based approaches in sparse deployments.

132

Improvements with fine-grained modeling

To understand the benefits from using a per-AP path loss exponent, we
compare the performance of our modeling-based localization approaches when
a uniform path loss exponent is used. Table 4.3 shows that when switching
to a uniform path-loss exponent, the median error increased from 1.7 to 3.6
meters, and the maximum error increased from 6.7 meters to 12 meters. Using
a per-AP path loss improves the WiFiNet’s localization accuracy as it takes into
account the di�erences in the environments surrounding the APs (e.g., walls
and other obstacles).

Location insensitivity

We repeated our experiments to benchmark the performance of our algorithms
in a di�erent topology and environment (deployment 2 with 4 APs, Figure 4.20).
Table 4.2 shows the overall error for the modeling-based and Iterative ap-
proaches. We find that the algorithms perform well with a median error of
1.3-2.1 meters.

Impact of transmit power

Our experiments with localizing Bluetooth devices resulted in an increased
median error (2-6.7 meters) — owing to its low transmit power, only one of
the APs could detect the Bluetooth device. In this case, the WiFiNet resorts to
the Strongest AP approach for localization (§4.2).

Emulating an Enterprise WLAN

We now try to emulate the structure of our in-building WLAN by placing
a WiFiNet AP near each production AP and distribute clients into o�ces
(Figure 4.20). Our topology consists of 4 APs and 6 clients. We use a total
of 9 non-WiFi interferers: 2 analog phones (high duty devices), 4 FHSS cordless
phone devices, a Bluetooth device (frequency hopping devices), a ZigBee
device (fixed frequency, pulsed transmitter) and a microwave oven (broadband
interferer). WiFi links are assigned channels (shown in Figure 4.20) so as to

133

M
ic

ro
w

av
e

ov
en

 (M
W

)

An
al

og
 p

ho
ne

 (A
2)

An
al

og
 p

ho
ne

 (A
1)

Zi
gB

ee
 (Z

B)
Bl

ue
to

ot
h

(B
T)

FH
SS

 b
as

e
(B

1)
FH

SS
 P

ho
ne

 (F
1)

FH
SS

 b
as

e
(B

2)
FH

SS
 P

ho
ne

 (F
2)

AP
1

AP
2

AP
3

AP
4

C1

C2

C3
C4

C5

C6

Cl
ie

nt
s:

A1
: 2

.4
06

 G
Hz

, A
2:

 2
.4

15
 G

Hz

Zi
gB

ee
, Z

B:
 2

.4
10

 G
Hz

 (a
ffe

ct
s

ch
. 1

)

4
FH

SS
 c

or
dl

es
s

ph
on

e
de

vi
ce

s
F1

, F
2,

 B
1,

 B
2

(a
ffe

ct
 c

h.
 1

-1
1)

Bl
ue

to
ot

h
de

vi
ce

, B
T

(a
ffe

ct
s

ch
. 1

-1
1)

M
ic

ro
w

av
e

O
ve

n,
 M

W
 (a

ffe
ct

s
ch

. 6
-1

1)

W
iF

iN
et

 A
Ps

 0
 0

.2
5

 0
.5

 0
.7

5 1

A
1

A
2

F
1

B
1

F
2

B
2

B
T

Z
B

M
W

P(I|O)

A
ir
W

iz
A

ct
u
a
l

 0
 0

.2
5

 0
.5

 0
.7

5 1

A
1

A
2

F
1

B
1

F
2

B
2

B
T

Z
B

M
W

P(I|O)

A
ir
W

iz
A

ct
u
a
l

 0
 0

.2
5

 0
.5

 0
.7

5 1

A
1

A
2

F
1

B
1

F
2

B
2

B
T

Z
B

M
W

P(I|O)

A
ir
W

iz
A

ct
u
a
l

 0
 0

.2
5

 0
.5

 0
.7

5 1

A
1

A
2

F
1

B
1

F
2

B
2

B
T

Z
B

M
W

P(I|O)

A
ir
W

iz
A

ct
u
a
l

 0
 0

.2
5

 0
.5

 0
.7

5 1

A
1

A
2

F
1

B
1

F
2

B
2

B
T

Z
B

M
W

P(I|O)

A
ir
W

iz
A

ct
u
a
l

 0
 0

.2
5

 0
.5

 0
.7

5 1

A
1

A
2

F
1

B
1

F
2

B
2

B
T

Z
B

M
W

P(I|O)

A
ir
W

iz
A

ct
u
a
l

Cl
ie

nt
 C

1

Cl
ie

nt
 C

2

Cl
ie

nt
 C

3

Cl
ie

nt
 C

4

Cl
ie

nt
 C

5

Cl
ie

nt
 C

6

C1
 (c

h.
 1

1)
, C

2
(c

h.
 6

),
C3

 (c
h.

 6
)

 C

4
(c

h.
 1

),
C5

 (c
h.

 1
),

C6
 (c

h.
 1

)

(m
im

ic
ki

ng
 a

 W
LA

N
 d

ep
lo

ym
en

t)

W
iF
iN
et

W
iF
iN
et

W
iF
iN
et

W
iF
iN
et

W
iF
iN
et

W
iF
iN
et

An
al

og
 P

ho
ne

s
(a

ffe
ct

 c
h.

 1
)

Fi
gu

re
4.

20
:E

m
ul

at
in

g
an

en
te

rp
ris

e
W

LA
N

w
ith

4
A

Ps
an

d
6

cl
ie

nt
s.

A
to

ta
lo

f9
no

n-
W

iF
id

ev
ic

es
ar

e
pl

ac
ed

to
in

te
rf

er
e

w
ith

th
e

cl
ie

nt
s:

2
an

al
og

ph
on

es
,4

FH
SS

co
rd

le
ss

ph
on

e
de

vi
ce

s,
a

Bl
ue

to
ot

h
de

vi
ce

,a
Zi

gB
ee

de
vi

ce
an

d
a

m
ic

ro
w

av
e

ov
en

.W
iF

iN
et

is
ab

le
to

ac
cu

ra
te

ly
ch

ar
ac

te
riz

e
th

e
in

te
rf

er
en

ce
im

pa
ct

(p
[I
|O

])
of

al
ld

ev
ic

es
(e

ve
n

th
os

e
of

th
e

sa
m

e
ty

pe
)o

n
ea

ch
of

th
e

cl
ie

nt
s.

134

create a scenario where each non-WiFi device a�ects at least one link. Each WiFi
link follows an HTTP tra�c model, with on-o� times derived from a wireless
trace [137]. We activate and de-activate the non-WiFi devices randomly, creating
scenarios when devices are simultaneously active. As before, for ground truth
measurements, we activate only one device at a time.

Figure 4.20 shows the interference impact of each interferer on the WiFi links
— depending on the channel of operation, location of the client, and overlap
probability (based on the actual WiFi tra�c and non-WiFi device activity),
WiFi links experience di�erent amount of interference from each non-WiFi
device. Further, WiFiNet’s estimate closely matches the ground truth for each
case. We find that all 4 FHSS cordless phone devices a�ect all the WiFi links
(p[I|O] varied from 0.45 to 0.8 due to their high transmit power of -20 dBm).
The overall impact p[I], however, only varied from 0.1 to 0.31 owing to their
frequency hopping nature. Peak emissions of microwave ovens are typically in
2.45 to 2.47 GHz, and so the oven severely a�ected the client C1 which operated
on channel 11. It is interesting to note that C3 (operating on channel 6) was
also a�ected by the oven (p[I|O]=0.36) as it was close to the device, whereas C2
(channel 6, farther from the device) and C5 (channel 1, closer to the device) were
not a�ected. Bluetooth device, due to its low power and adaptive frequency
hopping nature did not significantly a�ect any of the links. On the other hand,
high powered and high duty device like analog phones (A1 and A2) a�ected
the clients on channel 1 (C4, C5, C6) much more than the ZigBee device that
had a lower transmit power.

Microbenchmarks and Other results

We now benchmark convergence time, clustering algorithms, highlight cases
where WiFiNet can under perform, and present results on estimating sender-
side interference.

Convergence time

We define the convergence time as the time taken by WiFiNet to gather su�cient
samples (i.e., overlaps between WiFi frames and non-WiFi transmissions)

135

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

P
[I

/O
]

Frame overlaps

 0

 20

 40

 60

 80

 100

 0 50 100 150

C
D

F

Frame Overlaps

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5

C
D

F

Time (sec)

Full
50%
25%
10%

Strong interferers

Medium
interferers

Weak interferers

Figure 4.21: (left) Number of frame overlaps are required to converge for 10
ZigBee interferer scenarios including strong, medium and weak interference
(middle) CDF of the number packet overlaps required for p[I|O] to converge
(right) Convergence time as a function of the tra�c load for an FHSS cordless
phone.

to compute an accurate p[I|O] estimate (within ±0.1 of the ground truth).
Figure 4.21 (left) shows 9 di�erent scenarios where a ZigBee interferer causing
strong, medium or weak interference is activated along with a WiFi link. Across
all scenarios, we find that < 100 overlaps between WiFi frames and ZigBee
transmissions are enough for p[I|O] to converge (convergence points shown with
black circles). Across di�erent non-WiFi interferers and links < 150 overlaps are
enough to converge to the ground truth (CDF shown in Figure 4.21 (middle)).
The time for convergence depends on the WiFi link’s tra�c load, and the activity
of the non-WiFi device. Figure 4.21 (right) shows that although the convergence
time increases with lesser tra�c, it is less than 4 seconds across a variety of
tra�c loads when using an FHSS cordless phone as an interferer. For devices
like microwave ovens and analog cordless phones, convergence time was much
lesser owing to increased overlaps.

136

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 5 10 15 20

D
e
fe

rr
a
l P

ro
b
a
b
ili

ty

Locations

Deferral probability
(Actual)

T1

P1 P2

T2

Time
synchronized

frame summary
(e.g., from AP1)

Non-deferral behavior

synchronized
merged pulse trace

(e.g., from AP2)

WiFi Link
Transmissions

Non-WiFi Device
Transmissions

Deferral behavior

Case (a) Case (b)

 0

 1

 2

 3

 4

 5

 6

Low Mid High Low Med High Low Mid High

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

Load per link (Mbps)

Hidden Exposed non-HT/non-ET

0.82

Figure 3: Throughput achieved using DET (normalized to
DCF throughputs) on a two-link topology for three different
scenarios of HT, ET and non-HT/non-ET. Low, Mid and High
represent loads of 1.2Mbps, 2.4Mbps and 6Mbps respectively.
Performance gains of DET over DCF increases with increase in
traffic load for HT and ET, while the throughput decreases for
non-HT/non-ET links under heavy loads due to path latencies.

802.11 driver

Controller

802.11 firmware

Ethernet firmware

Ethernet driver

Client

Wireless
RTT

2190
(50)

2195
(21)

AP
RTT

2550
(80)

2449
(42)

Controller
RTT

2800
(200)

2585
(110)

Soekris
(266MHz)
100 Mbps

VIA
(1.2 GHz)

GigE

Scheduler

AP

D2D
delay

160
(20)

27
(15)

Mean (Variance)
in microseconds

Wired
delay

285
(22)

95
(18)

Figure 4: Latencies on Controller-AP-client path that impacts
centralized scheduling decisions. Note that Controller RTT =
Wired delay + AP RTT .

stems from overheads and inaccuracies in scheduling downlink
packets from the controller. In spite of our considerable effort to
minimize various delays and their variance between the controller
and the APs, some delay and variance in delay persists. Through
careful instrumentation of the Atheros wireless driver (Testbed 1)
and the Intel ipw2200 wireless driver (Testbed 2), we obtained
these delays for different parts of the downlink path (Figure 4).
We found that the inaccuracies in estimating the “wired delay”
(Figure 4) was a significant contributor to scheduling inaccuracies
for traffic.
In the next section, we present our design and implemen-

tation path for CENTAUR that masks these delays and their
variability effectively using a combination of techniques — epoch-
based scheduling, fixed backoffs, packet staggering, and a hybrid
model. Through a combination of all these techniques, CENTAUR
achieves throughput gains for exposed as well as hidden terminals
scenarios, without sacrificing performance in more common cases.

4. CENTAUR DESIGN

Time

n � 1 Concurrent Transmissions

AP Y Defers

�AP X

�st

to

P1

�w = DIFS + 1
2CWmin

�w

�w �w �w

P
0

1

P2 P3

P
0

2

Pn

P
0

n�1 P
0

n

AP Y Defers�st

P1

�w �w �w

P
0

1

P2

P
0

2

Pn

P
0

n�1
P

0

n

AP X Defers

Pn�1

n Concurrent Transmissions

�w

�st

P1

�w � tx

P2

P
0

1

tx

tx

�AP Y

�AP X

�AP Y

�AP X

�AP Y

Unknown Concurrent Transmissions

Channel Free �
Channel Busy �

C
a
se

(i
ii
)

C
a
se

(i
)

C
a
se

(i
i)

AP Y Defers

to

to

Figure 5: Staggering packets by a time �st increases trans-
mission concurrency. Cases (i) and (ii) illustrate the scenarios
where the channel state remains the same for the back-off
duration �w therefore synchronizing the transmissions. Case
(iii) depicts the scenario where the gains can be unpredictable.

CENTAUR incorporates the basic scheduling approach of DET
and augments it to mitigate some of its main limitations. We
describe this by defining the three main objectives of CENTAUR
beyond what DET already provides. They are to: (i) exploit
exposed terminals without disabling carrier sensing, (ii) amortize
overheads in the scheduling process, and (iii) allow co-existence
of uplink as well as non-enterprise traffic by combining our
centralization approach with DCF. We describe how CENTAUR
meets each objective, in turn.

4.1 Exploiting exposed terminals without dis-
abling carrier sensing

A typical way to allow simultaneous communication over ex-
posed terminal links is to disable carrier sensing. However,
disabling carrier sensing for all nodes is particularly dangerous,
as it might increase the possibilities of interference. A more
intelligent approach is to implement selective carrier sensing
wherein a transmitter would carrier sense (and therefore back-off)
for non-ET links but continue with the transmission for ET links.
CMAP [26] is an example of such an approach. However, as the
authors discuss in [26], the design of such a mechanism either
requires software level modifications for both APs and clients, or
it requires a change in the existing 802.11 protocol standard. In
keeping with our design goal of requiring no changes at clients
or in the underlying 802.11 standard, we achieve simultaneous
communication over exposed terminals using an alternate approach
as follows: (i) maintain carrier sensing, (ii) use fixed back-offs, and
(iii) stagger packets destined to exposed APs. We describe the use
of (ii) and (iii) in detail, next.

T1

P1 P2

T2

Time
synchronized

frame summary
(e.g., from AP1)

Non-deferral behavior

synchronized
merged pulse trace

(e.g., from AP2)

WiFi Link
Transmissions

Non-WiFi Device
Transmissions

Deferral behavior

Case (a) Case (b)

 0

 1

 2

 3

 4

 5

 6

Low Mid High Low Med High Low Mid High

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

Load per link (Mbps)

Hidden Exposed non-HT/non-ET

0.82

Figure 3: Throughput achieved using DET (normalized to
DCF throughputs) on a two-link topology for three different
scenarios of HT, ET and non-HT/non-ET. Low, Mid and High
represent loads of 1.2Mbps, 2.4Mbps and 6Mbps respectively.
Performance gains of DET over DCF increases with increase in
traffic load for HT and ET, while the throughput decreases for
non-HT/non-ET links under heavy loads due to path latencies.

802.11 driver

Controller

802.11 firmware

Ethernet firmware

Ethernet driver

Client

Wireless
RTT

2190
(50)

2195
(21)

AP
RTT

2550
(80)

2449
(42)

Controller
RTT

2800
(200)

2585
(110)

Soekris
(266MHz)
100 Mbps

VIA
(1.2 GHz)

GigE

Scheduler

AP

D2D
delay

160
(20)

27
(15)

Mean (Variance)
in microseconds

Wired
delay

285
(22)

95
(18)

Figure 4: Latencies on Controller-AP-client path that impacts
centralized scheduling decisions. Note that Controller RTT =
Wired delay + AP RTT .

stems from overheads and inaccuracies in scheduling downlink
packets from the controller. In spite of our considerable effort to
minimize various delays and their variance between the controller
and the APs, some delay and variance in delay persists. Through
careful instrumentation of the Atheros wireless driver (Testbed 1)
and the Intel ipw2200 wireless driver (Testbed 2), we obtained
these delays for different parts of the downlink path (Figure 4).
We found that the inaccuracies in estimating the “wired delay”
(Figure 4) was a significant contributor to scheduling inaccuracies
for traffic.
In the next section, we present our design and implemen-

tation path for CENTAUR that masks these delays and their
variability effectively using a combination of techniques — epoch-
based scheduling, fixed backoffs, packet staggering, and a hybrid
model. Through a combination of all these techniques, CENTAUR
achieves throughput gains for exposed as well as hidden terminals
scenarios, without sacrificing performance in more common cases.

4. CENTAUR DESIGN

Time

n � 1 Concurrent Transmissions

AP Y Defers

�AP X

�st

to

P1

�w = DIFS + 1
2CWmin

�w

�w �w �w

P
0

1

P2 P3

P
0

2

Pn

P
0

n�1 P
0

n

AP Y Defers�st

P1

�w �w �w

P
0

1

P2

P
0

2

Pn

P
0

n�1
P

0

n

AP X Defers

Pn�1

n Concurrent Transmissions

�w

�st

P1

�w � tx

P2

P
0

1

tx

tx

�AP Y

�AP X

�AP Y

�AP X

�AP Y

Unknown Concurrent Transmissions

Channel Free �
Channel Busy �

C
a
se

(i
ii
)

C
a
se

(i
)

C
a
se

(i
i)

AP Y Defers

to

to

Figure 5: Staggering packets by a time �st increases trans-
mission concurrency. Cases (i) and (ii) illustrate the scenarios
where the channel state remains the same for the back-off
duration �w therefore synchronizing the transmissions. Case
(iii) depicts the scenario where the gains can be unpredictable.

CENTAUR incorporates the basic scheduling approach of DET
and augments it to mitigate some of its main limitations. We
describe this by defining the three main objectives of CENTAUR
beyond what DET already provides. They are to: (i) exploit
exposed terminals without disabling carrier sensing, (ii) amortize
overheads in the scheduling process, and (iii) allow co-existence
of uplink as well as non-enterprise traffic by combining our
centralization approach with DCF. We describe how CENTAUR
meets each objective, in turn.

4.1 Exploiting exposed terminals without dis-
abling carrier sensing

A typical way to allow simultaneous communication over ex-
posed terminal links is to disable carrier sensing. However,
disabling carrier sensing for all nodes is particularly dangerous,
as it might increase the possibilities of interference. A more
intelligent approach is to implement selective carrier sensing
wherein a transmitter would carrier sense (and therefore back-off)
for non-ET links but continue with the transmission for ET links.
CMAP [26] is an example of such an approach. However, as the
authors discuss in [26], the design of such a mechanism either
requires software level modifications for both APs and clients, or
it requires a change in the existing 802.11 protocol standard. In
keeping with our design goal of requiring no changes at clients
or in the underlying 802.11 standard, we achieve simultaneous
communication over exposed terminals using an alternate approach
as follows: (i) maintain carrier sensing, (ii) use fixed back-offs, and
(iii) stagger packets destined to exposed APs. We describe the use
of (ii) and (iii) in detail, next.

Figure 7: Illustration of carrier sensing estimation in AirWiz.

that AirWiz is correctly able to identify the true interferer.
XXXX downlink conflicts only (even for non-WiFi)XXX

Interactions with external interference. External in-
terference can be caused by non-WiFi devices that are
not a part of the enterprise or by other non-enterprise
wireless tra�c (e.g., tra�c from nearby WiFi networks).
In both these cases, interference estimation can proceed
as is if at least one of the APs is able to capture the pulse
(or frame) transmissions from the interference source.
However, if the transmissions from the non-WiFi device
(or the external WiFi transmitter) are not captured by any
AirWiz AP, then AirWiz controller would not be able to
identify the source of interference.

2.5 Carrier sensing estimation
Similar to the procedure used for interference analysis,
AirWiz controller computes the carrier sensing relation-
ships by correlating the frame transmissions from the
WiFi transmitter and pulse transmissions from the non-
WiFi device. Figure 7 shows two cases of interest.
Case(a) when the WiFi transmitter is not defering to the
non-WiFi device, AirWiz controller will observe several
instances where the frame transmission starts while the
pulse transmission is in progress. Case(b) When the
WiFi transmitter is indeed defering to the non-WiFi
device, AirWiz controller will not observe instances where
frame transmission starts while the pulse transmission
is in progress. However, this condition alone is not
enough to infer that the WiFi transmitter is defering to
the non-WiFi device, as it may happen that the WiFi
transmitter did not have any packets to send while the pulse
transmission was in progress i.e., the WiFi transmitter
did not contend for the medium. To identify the deferral
instances, we use a heuristic similar to the prior work on
carrier sense estimation between WiFi links [6, 8]: the
controller identifies the deferring frames as those where
the di�erence between the pulse transmission end time
and the frame transmission start time is within a certain
threshold �w. Here, �w is the maximum time spent by the
WiFi transmitter performing back-o� and is set to 28+320
µs (DIFS + Max back-o� period for 802.11g).

The controller then computes the fraction � = nd
nd+nnd

where nnd is the number of Case (a) frame transmission
instances that indicate non-deferral behavior and nd is
the number of Case (b) instances that indicate deferral
behavior. If the transmitter is indeed deferring, � would
be close to 1. Whereas, if the transmitter is not deferring to
the non-WiFi device, the di�erence in the pulse and frame
start transmission times would be uniformly distributed
in the interval of [0, �p + �w], where �p is the duration
of the pulse. That is, we expect � ⇡ �w

�p+�w
. Typically,

�p � �w, therefore � is low for cases of non-deferral (e.g.,
for �p for microwave ovens, cordless phones, and bluetooth
devices is 8 ms, 1.25 ms, and 625 µs respectively). In our
experiments, we observed that a threshold of 0.8 (i.e.,
checking if � > 0.8) was able to identify deferring WiFi
transmitters while keeping the false positives low.

I

2.6 Localizing a non-WiFi device instance
We wish to develop a real-time localization scheme that is
computationally e�cient, imposes zero profiling overhead,
and physically locates the non-WiFi device instance of
unknown transmit power using a completely passive
approach. In AirWiz, we achieve the above goals by
developing RF propagation model based probabilistic
localization algorithms to physically locate the non-WiFi
device.

2.6.1 Model-based localization
Let r̂ = [r̂0, . . . , r̂N�1] be the mean RSS vector of all the
pulses/bands present in the cluster assigned to a non-WiFi
device instance (e.g., a Bluetooth device or an analog
phone instance). For the purposes of localization, we only
consider the APs with valid received powers (i.e., r̂i 6= �).
We divide the entire region into grids of size 1 ⇥ 1 meters.
Let i denote the grid location of APi. Let dij denote
the distance between grids i and j. Let P (l|̂r) denote
the probability of the non-WiFi device being at location
l, given that the received power vector is r̂. We wish to
compute the grid location l such that P (l|̂r) is maximized
i.e., we want argmaxlP (l|̂r). Using Bayes’ theorem,
P (l|̂r) can be written as P (r̂|l).P (l)/P (r̂). Assuming
all locations are equi-probable, and since P (r̂) is constant
for all l, we have argmaxlP (l|̂r) = argmaxlP (r̂|l), which
can be calculated as argmaxl

�N�1
i=1 P (r̂i|l) (assuming

independence). This can be re-written as

argmaxl

N�1�

i=1

logP (r̂i|l) (4)

Case of known transmit power. If the non-WiFi device
instance is at a grid l, then the expected received power
at APi (located at grid i) can be modeled as a normal
distribution N (µil, �2), where the expected mean of the
received power can be modeled as µil = Ro�10�log10dil.

8

Figure 7: Illustration of carrier sensing estimation in AirWiz.

that AirWiz is correctly able to identify the true interferer.
XXXX downlink conflicts only (even for non-WiFi)XXX

Interactions with external interference. External in-
terference can be caused by non-WiFi devices that are
not a part of the enterprise or by other non-enterprise
wireless tra�c (e.g., tra�c from nearby WiFi networks).
In both these cases, interference estimation can proceed
as is if at least one of the APs is able to capture the pulse
(or frame) transmissions from the interference source.
However, if the transmissions from the non-WiFi device
(or the external WiFi transmitter) are not captured by any
AirWiz AP, then AirWiz controller would not be able to
identify the source of interference.

2.5 Carrier sensing estimation
Similar to the procedure used for interference analysis,
AirWiz controller computes the carrier sensing relation-
ships by correlating the frame transmissions from the WiFi
transmitter and pulse transmissions from the non-WiFi
device. Figure 7 shows two cases of interest.
Case(a) when the WiFi transmitter is not defering to the
non-WiFi device, AirWiz controller will observe several
instances where the frame transmission starts while the
pulse transmission is in progress.
Case(b) When the WiFi transmitter is indeed defering to
the non-WiFi device, AirWiz controller will not observe
instances where frame transmission starts while the pulse
transmission is in progress. However, this condition alone
is not enough to infer that the WiFi transmitter is defering
to the non-WiFi device, as it may happen that the WiFi
transmitter did not have any packets to send while the pulse
transmission was in progress i.e., the WiFi transmitter
did not contend for the medium. To identify the deferral
instances, we use a heuristic similar to the prior work on
carrier sense estimation between WiFi links [6, 8]: the
controller identifies the deferring frames as those where
the di�erence between the pulse transmission end time
and the frame transmission start time is within a certain
threshold �w. Here, �w is the maximum time spent by the
WiFi transmitter performing back-o� and is set to 28+320
µs (DIFS + Max back-o� period for 802.11g).

The controller then computes the fraction �cs =
nd

nd+nnd
where nnd is the number of Case (a) instances

that indicate non-deferral behavior and nd is the number
of Case (b) instances that indicate deferral behavior. If
the transmitter is indeed deferring, �cs would be close
to 1. Whereas, if the transmitter is not deferring to the
non-WiFi device, the di�erence in the pulse and frame
start transmission times would be uniformly distributed
in the interval [0, �p + �w], where �p is the duration of
the pulse. That is, we expect �cs ⇡ �w

�p+�w
. Typically,

�p � �w, therefore � is low for cases of non-deferral (e.g.,
for �p for microwave ovens, cordless phones, and bluetooth
devices is 8 ms, 1.25 ms, and 625 µs respectively). In our
experiments, a threshold of 0.8 (i.e., checking if �cs >
0.8) was able to identify deferring WiFi transmitters while
keeping the false positives low (§3).

2.6 Localizing a non-WiFi device instance
We wish to develop a real-time localization scheme that is
computationally e�cient, imposes zero profiling overhead,
and physically locates the non-WiFi device instance of
unknown transmit power using a completely passive
approach. In AirWiz, we achieve the above goals by
developing RF propagation model based probabilistic
localization algorithms to physically locate the non-WiFi
device.

2.6.1 Model-based localization
Let r̂ = [r̂0, . . . , r̂N�1] be the mean RSS vector of all the
pulses/bands present in the cluster assigned to a non-WiFi
device instance (e.g., a Bluetooth device or an analog
phone instance). For the purposes of localization, we only
consider the APs with valid received powers (i.e., r̂i 6= �).
We divide the entire region into grids of size 1 ⇥ 1 meters.
Let i denote the grid location of APi. Let dij denote
the distance between grids i and j. Let P (l|̂r) denote
the probability of the non-WiFi device being at location
l, given that the received power vector is r̂. We wish to
compute the grid location l such that P (l|̂r) is maximized
i.e., we want argmaxlP (l|̂r). Using Bayes’ theorem,
P (l|̂r) can be written as P (r̂|l).P (l)/P (r̂). Assuming
all locations are equi-probable, and since P (r̂) is constant
for all l, we have argmaxlP (l|̂r) = argmaxlP (r̂|l), which
can be calculated as argmaxl

�N�1
i=1 P (r̂i|l) (assuming

independence). This can be re-written as

argmaxl

N�1�

i=1

logP (r̂i|l) (4)

Case of known transmit power. If the non-WiFi device
instance is at a grid l, then the expected received power
at APi (located at grid i) can be modeled as a normal
distribution N (µil, �2), where the expected mean of the
received power can be modeled as µil = Ro�10�log10dil.
Here, � is the pathloss exponent and Ro is the power

8

Deferral estimate
(WiFiNet)

Decreasing distance from ZigBee Transmitter

Figure 4.22: WiFiNet’s estimates of deferral probability close match the ground
truth. Here, a WiFi transmitter is moving toward a ZigBee interferer leading to
increase in the deferral probability.

Estimating sender-side interference

We also benchmarked WiFiNet’s ability to correctly estimate the carrier sensing
interference across a number of non-WiFi devices and links. Here, we move a
WiFi transmitter toward a ZigBee device (periodically transmits 4 ms pulses)
and measure its deferral probability (§4.2). For ground truth, we measure
the transmitter’s sending rate when the device is active and that when the
device is inactive. WiFiNet estimates the deferral probability in real-time —
we observe that �cs i.e., the fraction of Case (2) instances (§4.2) increases as
we move the transmitter away, indicating increased deferral. Further, �cs also
closesly matches the ground truth deferral probability.

Performance of clustering

Clustering is straightforward in many cases e.g., when the devices are of
di�erent types, or in the case of fixed-frequency devices (of the same type)
using di�erent center frequencies. We benchmarked our RSS and timing based
clustering algorithms (§4.2) for the harder cases of (i) fixed-frequency devices
using the same center frequency and (ii) frequency hopping devices. Table 4.4
shows the overall summary (when operating up to 4 devices of the same

137

Algorithm Attribute Clustering performance
% Correct % Over-cluster % Under-cluster

DBSCAN Timing 92.7% 5% 2.3%
DBSCAN RSS 88.7% 5.2% 6.1%
k-Means + EM Timing 97.6% 1.3% 1.1%
k-Means + EM RSS 91.4% 6.5% 2.1%

Table 4.4: Performance of clustering mechansisms used in WiFiNet. Results
for two clustering algorithms (������ and k-means+EM) using (i) start time
o�set and (ii) RSS attributes are shown. Up to non-WiFi devices of the same
type were placed at random locations.

type). We find that clustering algorithms perform reasonably well with > 88%
accuracy in detecting the number of device instances. In case of over-clustering,
the number of pulses in the extra clusters were relatively low, allowing us to
discard the false positives. Under-clustering, however, can lead to error in
estimates that can happen if the devices are close to each other (§4.3). Using
timing attributes (when available) results in increased accuracy, compared
to RSS based clustering, as timing attributes are not sensitive to the distance
between devices (§4.3). Also, k-means+EM clustering has higher accuracy
compared to density based clustering (������).

Sources of error

We now highlight some of the scenarios where WiFiNet’s performance can
degrade.
Overlapping transmissions. We now benchmark the e�ect of transmission
overlaps between multiple interferers. Figure 4.23 (left) shows WiFiNet’s
interference estimates in the presence of a strong and a weak non-WiFi interferer,
as a function of the overlap between their transmission times. In the unlikely
case when the transmissions from both non-WiFi devices overlap 100% of
the time, WiFiNet is unable to distinguish between the two. However, as
the percentage of overlap decreases, WiFiNet is able to discern the impact
of the weak interferer. In practice, we expect diversity in device transmission

138

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
[I
/O

]

Percent overlap

 0

 20

 40

 60

 80

 100

-0.5 0 0.5

C
D

F

Error in P[I/O]

0%
20%
40%
80%

Weak Intf
WiFiNet)

Weak Intf (Actual)

Strong Intf (WiFiNet)Strong Intf (Actual)

Figure 4.23: (left) Ability of WiFiNet to correctly identify interferers when
transmissions from two non-WiFi devices overlap. p[I|O] measured by
WiFiNet for both strong (p[I|O] = 0.88) and weak (p[I|O] = 0.22) interferers
as a function of their overlap in transmission times. If the overlap is less than
45%, WiFiNet can distinguish the strong and weak interferers accurately. (right)
Ability of WiFiNet to correctly estimate p[I|O] of an interferer as function of
percentage of pulses lost (i.e., not captured) by an WiFiNet AP.

times [131] to allow WiFiNet to output accurate interference estimates.

Coverage. WiFiNet’s ability to derive an accurate interference estimate depends
on how well the non-WiFi device’s transmission are captured. In particular,
p[I|O] and p[L] estimates will di�er from the ground truth when none of the
WiFiNet APs capture the device’s transmissions. Figure 4.23 (right) shows
the impact of losing transmissions from non-WiFi interferers — the error in
estimates increase with decrease in the percentage of captured transmissions. In
a typical enterprise deployment with multiple APs, this might not be a concern
as we can expect at least one AP to capture the device’s transmissions.

Proximity between devices. We now present a case when clustering mecha-
nisms can under perform. We experiment with 2 FHSS cordless phone devices
and place them at di�erent distances. Figure 4.24 shows that timing based
clustering is una�ected by the distance between the devices, but RSS based
clustering is not. When the devices are placed 6 5 meters apart (at L1, L2), RSS

139

D1 D2 D1 D2 D1 D2 D1 D2 D1 D2 D1 D2

Cluster 1 Cluster 2

 0
%

 2
5
%

 5
0
%

 7
5
%

 1
0
0
%

% pulses

 0%

 25%

 50%

 75%

 100%

%
 p

u
ls

e
s

a
b

c

RSS based clusteringTiming based clustering

Error in clustering
L0 L1 L2 L0 L1 L2

 0%

 25%

 50%

 75%

 100%

%
 p

u
ls

e
s

a
b

cNoise

 0%

 25%

 50%

 75%

 100%

%
 p

u
ls

e
s

a
b

c

Figure 4.24: Performance of clustering for 2 FHSS cordless phone devices as a
function of the distance between them. Clustering using (i) timing properties
is una�ected by the distance, whereas that using (ii) RSS performs incorrect
clustering when the devices are placed 6 5 meters apart (L1, L2). For L0, devices
were 10 m apart.

based clustering cannot distinguish them as their RSS vectors look similar. This
results in under-clustering (pulses of both devices are put into one cluster) or
incorrect clustering (each cluster has a mixture of pulses from both devices).

�.� ������ ��� ����������

Our work on WiFiNet is a first step towards estimating non-WiFi interference
using commodity WiFi hardware in today’s WLANs. We now comment on
some of the limitations and discuss the scope for improvements.

• Localization accuracy. While WiFiNet’s localization accuracy is reason-
able (a median error of 6 4 meters), the worst case error goes up to 15
meters. We believe that for purposes of non-WiFi device localization,
this worst case error is tolerable. For example, in most cases, such an
error would still be able to localize the non-WiFi device to within a
room, or an o�ce in a large enterprise. We note that accuracy of our
localization mechanisms can be further improved in a number of ways
such as increasing the density of APs [112], utilizing more complex

140

propagation models [65, 75, 120], using richer information about the
deployment [75] and exploring newer localization algorithms [41].

• Handling mobile non-WiFi devices. While WiFiNet can handle client
mobility, we did not experiment with the case where non-WiFi devices
themselves are mobile. We note that WiFiNet should be able to handle
mobile non-WiFi devices such as analog phones, or wireless video
cameras, which have detection times of less than 100 ms (Chapter 3).
However, localization accuracy for frequency hopping devices such
as Bluetooth or frequency hopping cordless phones would be a�ected
because Airshark’s current detection times for these devices are in the
order of seconds. Further, mobile non-WiFi device localization would also
be problematic in the case of multiple devices of the same type that do
not exhibit any device-specific characteristics (e.g., two bluetooth devices).
This is because, in such cases, received power information at the APs is
essentially used as an identifier in our clustering algorithms (Chapter 4).

• Overlapping transmissions. Currently, WiFiNet cannot handle the
case where transmissions from both non-WiFi devices overlap most of
the time. In such cases, the di�culty arises as it is not clear which
device is responsible for the observed interference. We note that as the
percentage of overlap decreases, WiFiNet is able to discern the impact
interferers correctly. In practice, we expect diversity in device transmission
times [131] to allow WiFiNet to output accurate interference estimates.

�.� ������� �� �������

In this chapter, we presented WiFiNet, a system to estimate the interference
experienced by WiFi links in presence of non-WiFi devices using only WiFi
hardware. WiFiNet can correctly estimate the impact of each non-WiFi device,
in presence of multiple other interferers, even if they are of the same type.
It also correctly tracks changes due to client mobility, dynamic tra�c loads,
and varying channel conditions. Further, WiFiNet also identifies the physical

141

locations of non-WiFi devices. We believe a system such as WiFiNet can help
WLAN administrators use commodity WiFi APs to better understand and
manage non-WiFi interference, especially in environments such as enterprise
WLANs.

142

� �������� ������������ ��� �� �������� ��������

�.� ����������

In previous chapters, we presented systems that help understand the impact
of wireless interference using post-mortem analysis of wireless packet losses
i.e., the impact of interference is estimated by passively observing the event
of a packet loss. We now shift our attention to alternative techniques using
modeling procedures that help estimate the impact of interference before the
event of a packet loss. There are variety of modeling mechanisms that have
been explored to estimate the impact of interference between two WiFi links
based on the signal strength relationships between these links [84, 133]. We
adopt a similar approach in this chapter and try to understand the impact of
such interference between WiFi links. Specifically, we model the interference
between WiFi links that use di�erent channel widths, and devise mechanisms
to mitigate WiFi to WiFi interference using e�cient channelization mechanisms.
We defer similar modeling of non-WiFi interference scenarios for future work
(Chapter 7).

Traditionally, wireless channels strictly correspond to a pre-defined center
frequency and a specific channel width. It is well known that interference in
such fixed-width setting can be modeled using signal strength relationship
between the links [133]. While this strict notion of a fixed-width channels
have proven to be useful, researchers in recent years have realized that flexible
channels — channels in which the center frequency and bandwidth are picked
based on tra�c demands, noise and interference levels across a spectral band —
can further improve spectrum e�ciency. In the context of dynamic spectrum
access networks and cognitive wireless networks, a large body of work [30, 32, 97,
152, 164, 168] has examined strategies to assign flexible channels. More recently,
this problem of choosing the right frequency and width for communication
has gained relevance with the onset of white-space networking where agile
adaptation of these parameters is essential [24]. In this chapter, we explore
modeling mechanisms that help us derive the interference relationship between

143

Figure 5.1: Example flexible channel configurations using two channel widths
of 20 and 40 MHz. The total available spectrum is 40 MHz.

links using such flexible channels. Specifically, we focus on modeling the
interaction between flexible channels in the context of 802.11-based networks.

Current 802.11 hardware can provide a limited amount of software-level
flexibility that allows transceivers to operate on such flexible channels, e.g., a
fixed number of channel widths (5, 10, 20, and 40 MHz) and a set of permissible
center frequencies in the 2.4 GHz or 5 GHz band [67]. Using this flexibility,
the work in [36] shows how a single 802.11 link can pick an e�cient channel
width to adequately meet its tra�c demand. At a high level, [36] shows that
increasing channel width for a single, isolated link potentially allows greater
throughput. But that, for a given total transmit power used by a wireless card,
the power per unit frequency reduces for larger widths [36], leading to reduced
SNR and poor connectivity in longer links.

While the work in [36] focused on how to adapt the channel width for a single,
isolated link, we focus on how to employ flexible channelization when using
multiple, potentially interfering links. We look at the use of flexible channelization
in a fairly complex and realistic setting — modeling the interference between
flexible channels and improving throughput for an 802.11 enterprise WLAN
using o� the shelf hardware. The core problem we address in this chapter is
the following:

“Given an enterprise WLAN with many di�erent Access Points (APs)
and arbitrarily located wireless clients, how should flexible channels for
each AP be structured?”

Initially, we imagined that the problem has an easy solution: identify the
tra�c demand for each AP (aggregated over all its clients) and provide a single

144

channel to each AP that is proportional to this tra�c demand. The channel
choices can be periodically adapted based on demand evolution. Indeed, work
in [110] proposes and shows the benefits of such a solution through careful
simulation based studies. However, in our attempt to implement such a solution
on an 802.11 testbed, we quickly uncovered new challenges.

One of the biggest challenges was to create an e�ective model for a conflict
graph — a graph that captures the interference between a link and a potential
interferer. Prior work (e.g., [110, 164, 168]) assumes that the interference
behavior of two, potentially conflicting, links is una�ected by changes in their
channel widths. However, in reality, the interference properties of two links
can be greatly impacted by their channel width of operation, even if they use
the same channel configuration (i.e., the same width and center frequency).

We illustrate this through a simple, yet interesting example. Given two
links and a spectrum band, say 40 MHz, there are many ways to assign flexible
channels (Figure 5.1). Some natural choices are: (i) both links operate using the
entire 40 MHz channel and time-share using regular random access mechanisms
(40/40 in Figure 5.1), and (ii) both links operate on separate 20 MHz channels
(20+20) and potentially su�er no interference from each other. Initially, we
assumed that examining these two choices alone is adequate to find the most
e�cient channel assignment. However, in our testbed experiments we found
multiple two-link conflict scenarios where the best channel configurations were
fairly non-standard, including: (iii) one link on a 40 MHz channel, the other
on a 20 MHz channel, both with the same center frequency (40/20), (iv) both
links on partially overlapped 20 MHz channels, 20-20(POV). Interestingly, we
also found several cases where using a single 20 MHz channel (20/20) provided
better throughput than operating the links on a single 40 MHz channel (40/40).

The reason these other channel choices proved to be the best configuration
for some link topologies was due to the variable nature of conflict that changes
with channel width, even when the center frequency of the two links is identical.
In fact, through experiments we found that changing channel widths has a
great impact on all wireless interference parameters, e.g., carrier sense and
interference range, hidden terminals, exposed terminals, etc. There were many
instances where two neighboring links were in carrier sense range when using

145

the same 20 MHz, but turned into hidden terminals when their channel widths
were identically increased to 40 MHz. Exposed terminal scenarios sometimes
appeared when reducing channel widths. More complex interference patterns
arose in the presence of multiple links, and when considering di�erent center
frequencies, since some of the assignments resulted in partial spectral overlaps.

Hence, in our overall problem of assigning flexible channels in an enterprise
WLAN, we have to compute the conflict graph for all possible channel widths and
center frequencies. For an N node network using |w| possible channel widths and
k PHY data rates (e.g., for 802.11a, k = 8), this can require O(N2·k·|w|·2|w+1|)

measurements, one for each link pair, data rate, channel width, and center
frequency (§5.4). This is a particularly daunting and complex task. To address
this, we develop techniques to model the conflict graph using only O(N·k)
empirical measurements at a single channel width. The next step is to use this
conflict graph to assign flexible channels. In our proposed system, FLUID, a
central controller improves the network throughput by assigning the center
frequencies and widths to the APs on the fly, depending on the actual tra�c
demand. To further maximize the number of simultaneous transmissions,
FLUID explores a joint data scheduling and flexible channelization approach.
As we show in §5.5, the search space in this context grows exponentially in the
number of transmissions. To tackle this, we propose a randomized algorithm
with relatively low overhead to derive e�cient transmission schedules, as
demonstrated in our experiments.

We implemented FLUID on Atheros wireless cards running the MadWiFi
driver [8] and have deployed the system on a 50 node testbed spanning multiple
floors in our university building. Testbed results show that FLUID improves
the median throughput by 59% across all possible PHY rates and when using
dynamic rate adaptation, in a network-wide setting, compared to an approach
using fixed width channels. To the best of our knowledge, FLUID is the first
realization of an 802.11 based WLAN system consisting of multiple APs that
are capable of operating at variable channel widths.

We make the following contributions in this chapter:

146

• We show that while flexible channelization can improve system through-
put, its benefits in a network-wide setting are not immediate — careful
construction of flexible channels requires taking into account the interfer-
ence parameters like carrier sensing, hidden terminals etc., which depend
on the combinations of frequencies and channel widths used, as well as
the specifics of topology and tra�c demand (§5.2).

• We develop a modeling framework to e�ciently compute the conflict
graph for anN node network employing flexible channelization using only
O(N.k) empirical measurements at a single channel width, as opposed to
brute force approaches, which require O(N2.k.|w|.2|w+1|) measurements
(§5.4).

• We present an algorithm to construct flexible channels, and show that
combining flexible channelization with data scheduling can further
improve network throughput (§5.5).

• Through a real deployment on our testbed, we evaluate FLUID over
a variety of scenarios, and show that it can significantly improve the
performance of a WLAN (§5.7).

�.� ���������� �� �������� ��������

Prior experimental work has noted three properties of varying channel widths
on a single, isolated link [36]: (i) throughput of a link is proportional to the
channel width, (ii) halving the channel width doubles the power per Hertz,
and consequently increases the range by 3 dB1, and (iii) reducing the width
by reducing the clock rate (and hence sub-carrier spacing) results in lower
battery consumption. One would expect the first two properties, in particular,
link throughput, to be impacted by the interference from the other links in the
network. In the rest of this section, we show that this is indeed the case and
investigate the reasons behind this. Additionally, we show why designing a

1In Sec. ??, we discuss how our models can be modified to work in systems where this
property might not hold

147

network that uses flexible channelization presents new challenges.

Measurement methodology. We perform measurements on a 50 node testbed
deployed across five floors of a building. Each node runs Linux 2.6.20 kernel
and is equipped with two Atheros 5212 based 802.11 NICs. Modifications to
the MadWiFi driver allowed us to write to the hardware register that configures
the PLL, giving us the capability to use four channel widths of 5, 10, 20 and 40
MHz. We also made modifications to 802.11 timing parameters to ensure fair
contention among di�erent widths [36] . Experiments were carried out using
802.11a to avoid any external interference from our department WLAN that
operates on 802.11 b/g. We experimented with dynamic rate adaptation and with
all fixed PHY data rates i.e., 6 Mbps to 54 Mbps in the 802.11a system. Due to
space constraints, we typically present a snapshot of results, often using three
fixed PHY rate scenarios (12, 36, and 54 Mbps2), as well as when the SampleRate
algorithm [8] is used to dynamically adapt the PHY rate across all possible
802.11a rates. For bandwidth tests, the nodes broadcast 1400 byte UDP packets
at full sending rate for 10 seconds and experiments are repeated for 30 runs.

Impact of flexible channels

We observed that, in isolation, the throughput for high SNR links nearly doubles
on doubling the channel width. However, in the presence of even one interferer,
this property no longer holds. To show this, we randomly picked a 40 MHz
interferer, and measured how the throughput of a randomly chosen good
quality link (delivery ratio > 0.99) changes when it switches from 20 MHz
to any of the other widths. The interferer and the link used the same center
frequency. Table 5.1 shows the throughputs obtained at 40 MHz and 10 MHz
(throughput normalized w.r.t. 20 MHz) for four di�erent PHY rates and rate
adaptation (SampleRate), across 2872 link/interferer combinations. Since the
transmitter might be outside the interference range of a link, we observe that

2The data rate notations used in the thesis correspond to the PHY rates when the channel
width is set to 20 MHz (the default in 802.11) . For e.g., 6 Mbps refers to OFDM with BPSK and
coding rate of 1/2. The actual data rate would be doubled (or halved) when the channel width is
set to 40 (or 10) MHz.

148

20 �! 10 MHz 20 �! 40 MHz
% links w/ Norm. Thr. % links w/ Norm. Thr.

PHY Rate 0.5⇥ 0.5⇥—1⇥ > 1⇥ 2⇥ 1⇥—2⇥ < 1⇥
Fixed 6 Mbps 44% 41% 15% 31% 45% 24%

Fixed 12 Mbps 42% 45% 13% 29% 48% 23%
Fixed 36 Mbps 37% 44% 19% 24% 49% 27%
Fixed 54 Mbps 38% 41% 21% 20% 51% 29%

SampleRate 38% 39% 23% 27% 45% 28%
Table 5.1: Choosing the right width is non-trivial as throughput may not be
proportional to channel width under interference. Plot shows UDP throughputs
for 10 and 40 MHz widths (throughputs normalized w.r.t. 20 MHz) across 2872
link/interferer combinations for di�erent fixed PHY rates and for dynamic rate
adaptation (SampleRate). Shaded portion indicates the percentage of links for
which the throughput is doubled (halved) when the width is doubled (halved).

 0
 20
 40
 60
 80

 100

 0 0.2 0.4 0.6 0.8 1

C
D

F

Carrier sense probability

5 MHz
10 MHz
20 MHz
40 MHz 0

 10
 20
 30
 40

10 20 30 40 50 60 70 80

Pe
rc

en
t L

in
ks

Frequency separation (MHz)

12 Mbps
36 Mbps
54 Mbps

Figure 5.2: (left) Carrier sensing probability at di�erent widths for 600 link pairs
(right) Frequency separation needed for conflicting 40 MHz links to become
non-conflicting at di�erent PHY rates.

throughput doubles on doubling width for a certain fraction of the links e.g.,
when using rate adaptation, 27% of the links doubled the throughput when
switched from 20 MHz to 40 MHz. However, this property doesn’t hold in
most other cases (unshaded portions in the table). For 45% of the links, the
throughput increases by varying amounts—1⇥ to 2⇥, and for the remaining 28%
of the links, the throughput decreases when switched to 40 MHz. This holds

149

PHY Rate Scenario 5 MHz 10 MHz 20 MHz 40 MHz

Fixed 12 Mbps Hidden 78 127 81 46
Exposed 139 114 117 149

Fixed 36 Mbps Hidden 81 135 87 58
Exposed 121 108 84 96

Fixed 54 Mbps Hidden 96 141 97 74
Exposed 107 99 73 69

Table 5.2: Number of hidden and exposed links depend on the channel widths.
The precise methodology to identify hidden and exposed links was taken
from [148].

for other widths as well, even though at varying degrees. In order to isolate
the e�ect of PHY rate, we repeated the experiments across di�erent fixed PHY
rates and observed similar results (Table 5.1). To study why this happens, we
look at the impact of widths on: carrier sense range, hidden and exposed links.

Carrier sensing range: Since smaller widths have higher energy per Hertz [36],
we observed that more links carrier sense each other at lower widths. Figure 5.2
(left) presents the CDF of carrier sensing probabilities among 600 link pairs in
our testbed for di�erent widths. Around 33% of link pairs carrier sense each
other at 5 MHz, while only 15% of link pairs carrier sense each other at 40 MHz.

Hidden and exposed links: Table 5.2 shows the number of hidden and exposed
links at di�erent channel widths (and rates). While we find that the number of
hidden and exposed links vary with widths, there is no particular trend. This is
because lower widths not only cause more links to be in carrier sensing range,
but also interfere over longer distances.

Partial spectrum overlaps: The extent of interference between links also
depends on the amount of spectral overlap [106]. In case of flexible channels,
partial spectral overlaps can occur when links use same center frequencies
but di�erent channel widths, or if links operate at di�erent center frequencies.
Such an interaction between the links has to be well understood in order to

150

assign channels e�ciently. For example, we observed that varying amount of
frequency separation is needed between two conflicting 40 MHz links to make
them non-interfering. Figure 5.2 (right) shows this for 279 link pairs when
using di�erent PHY rates. At 36 Mbps, only 17% of the link pairs require a
separation of 40 MHz. 51% require less separation (o�ering the opportunity for
spectrum reuse). The remaining 32% require more than 40 MHz of separation,
implying that naively packing these links at a separation of 40 MHz can degrade
throughput.

Constructing flexible channels

We now study the impact of the above properties when assigning spectrum to
links in a network. To begin with, we ask a simple question: “If a total of 40 MHz
of spectrum is available, how should we assign it to two links?,” and show that the
solution has many interesting considerations. The best frequency and width
assignment, changes depending on the topology and the interference among
links.

Figure 5.3 shows throughput measurements for five simple two-link
topologies taken from real instances in our testbed along with the five example
spectrum assignments described in §5.1. Here, the configuration 40/20 refers to
the link (t1-r1) operating on the entire 40 MHz and (t2-r2) operating on 20 MHz,
using the same center frequency. The configuration 20-20(POV) refers to the
partial overlap case where the two links use two 20 MHz channels with center
frequencies separated by 10 MHz. A rounded rectangle enclosing two nodes
represents a conflict (i.e., carrier sensing when the nodes are both transmitting,
and interference when one node is transmitting and the other is receiving). The
first column shows the topology information, while the rest of the columns
illustrate how the conflicts change across di�erent assignments and result in
di�erent throughputs. The throughput values (U) are normalized w.r.t. to the
lowest throughput for each case. For the cases that require channel/width
switching (case E1, 20+20, 40/20 and 20-20 (POV)) we use optimizations to
reduce the switching overhead (§5.6). In all measurements, the tra�c was

151

Figure 5.3: Conflict information and corresponding throughputs with di�erent
spectrum assignments for real topologies in our testbed. A rounded rectangle
enclosing two nodes represents a conflict (i.e., carrier sensing when the nodes
are both transmitting, and interference when one is transmitting and the other
node is receiving).

backlogged on both links. For ease of exposition, in this section we present the
results when the 802.11 PHY was set to the base rate of 6 Mbps.

We now briefly explain why the best spectrum assignment (shown in bold
squares) di�ers in each case. Case E1 in Figure 5.3 corresponds to the scenario
where client r2 has a low SNR and thus a poor delivery ratio at 40 MHz; the
delivery ratio increases to 1 at 20 MHz because of 3 dB increase in SNR. For

152

client r1, the delivery ratio is 1 at both widths. Here, using client-centric widths
(40/20 in Figure 5.3) achieves the best throughput (a gain of 25% over 40/40).
All other configurations have worse throughputs as they either waste spectrum
or result in a poor delivery ratio for r2.

We consider two links in Case E2, with link (t2-r2) having a poor delivery
ratio at 40 MHz. Using 40/20 improves the delivery for r2 (due to increase
in SNR of the link) compared to 40/40. However, the links still continue to
carrier sense because of which they cannot e�ectively use the entire 40 MHz
spectrum. Here, 20+20 achieves a better throughput (a gain of 33% over 40/20)
as both links can simultaneously operate on separate 20 MHz channels with
good delivery ratios.

Case E3 illustrates the scenario of a one-way hidden terminal (t1 interferes
with r2) which is resolved by separating the links on two 20 MHz channels
(20+20). However, simply narrowing the width resolves the conflict — operating
the link (t2-r2) at 20 MHz improves the SINR and hence makes the links non-
conflicting. 40/20 improves the throughput by 47% over 20+20 due to increased
transmission concurrency.

In a two-way hidden terminal scenario (Case E4), the best configurations
resolve the conflict between two links, either 20+20, or partially overlapping
assignment, 20-20(POV). Using 20-20(POV) might be more preferable for larger
network scenarios as it uses lesser spectrum. Interestingly, using a single 20
MHz channel for both links (20/20) provides a better throughput than using
a single 40 MHz channel (40/40), as the links carrier sense each other in the
20/20 configuration due to increase in their signal strengths.

Finally, Case E5 represents a scenario where the links carrier sense each
other when using the 20/20 configuration. However, it turns out that the links
continue to carrier sense at all other configurations. For example, a center
frequency separation of 20 MHz (20+20) is not adequate to resolve the carrier
sensing conflict. Given this scenario, sharing the medium using 40/40 turns
out to be the best configuration.
Why is the best flexible channel configuration di�erent in each case? While
the above is by no means an exhaustive set of flexible channel configurations,
even exploring this limited set of configurations allowed us to observe cases

153

where di�erent configurations performed the best. This is because conflicts
(carrier sensing and interference relationships) between the links are determined
by the flexible channel configuration used. These conflicts in turn determine
the total throughput in each case. Thus, in each case we have to choose a
configuration that minimizes the conflict and improves the overall throughput.
Put another way, to maximize the overall network throughput, we have to
employ a conflict-aware mechanism which intelligently chooses a particular
flexible channel configuration based on the carrier sensing and interference
relationships at di�erent widths and center frequencies.

�.� �����: ��������

We propose FLUID, a system that improves the wireless network throughput
through the use of flexible channels. While the design of FLUID is generic
and can be applied to any 802.11 based setting, in this work, we focus on its
application to an enterprise WLAN setting.

Target network setting. Consider an enterprise WLAN setting where clients
and APs are capable of operating on flexible channels. All the APs are connected
over an Ethernet backplane, and are managed using a central controller. Let
B be the total amount of spectrum in use. Let |w| denote the total number of
channel widths to choose from. Let wmin denote the minimum channel width
used, and assume that channel widths are of the form w=wmin·2r, where
0 6 r 6 |w| - 1. In our implementation, |w| = 4 and wmin = 5, as we use
5 MHz, 10 MHz, 20 MHz, and 40 MHz as the possible channel widths. Let
F = {(fc,w)} be the set of permissible center frequency and width combinations
s.t. fc is of the form fc = wmin·c, where c is an integer and [fc -

w
2 , fc + w

2] ⇢
[0,B].

We now sketch the main operations of FLUID. Figure 5.4 illustrates the
di�erent components involved in FLUID.

1. Conflict graph generation. FLUID builds a conflict graph to model the
interference between links while taking into account the combination of channel

154

widths and center frequencies. Using a brute force approach for conflict graph
computation becomes infeasible as it requiresO(N2·k·|w|·2|w+1|)measurements.
As discussed in §5.4, FLUID uses modeling techniques to reduce the overhead
to O(N·k).

2. Interference mitigation. The controller uses the conflict graph to mitigate
interference and improve system throughput either by employing (i) an
unscheduled approach i.e., flexible channelization with DCF or (ii) flexible
channelization along with a scheduled approach such as CENTAUR [148],
which can improve downlink performance. While we have explored both
the approaches, in this thesis, we focus on the harder problem of improving
downlink system throughput using a joint scheduling and flexible channelization
approach. Although designing such a scheduled system is more challenging
than its unscheduled counterpart, it o�ers better performance than DCF with
static channel assignment mechanisms for the following reasons: (i) it uses
spectrum e�ciently as it takes the actual tra�c into consideration, (ii) it resolves
downlink hidden interference and opportunistically capitalizes on exposed
terminal scenarios, (iii) using a scheduled approach enables an AP in FLUID to
employ client-centric widths which is otherwise di�cult to manage with DCF
in the presence of upload tra�c. In §5.7, we show that FLUID’s scheduled
approach performs better than CENTAUR and the unscheduled approaches
across various scenarios.

�.� �������� ��������� �� �����

In a traditional WLAN that uses a fixed channel width, the conflict graph
between N transmissions (all on the same channel) can be generated by
performing pair-wise link throughput tests [71] at each PHY rate k, which
requires a total of O(N2·k) measurements. Recent research [84, 133] has shown
that this overhead can be reduced to O(N·k) using SINR based modeling.
Applying such models to a variable channel width system is not straightforward,
as the number of spectral overlaps (and hence interference) depends on the
combinations of center frequencies and channel widths used. Figure 5.8 shows

155

FLUID Controller

Internet

Link Queue Transmission

Conflict
Graph

Profiler
O(N.k)

Modeling

scheduling

Signal strength
measurements

Feedback

RaC-Pack

Figure 5.4: Flow of operations in FLUID. Periodic signal strength measurements
are used to update the modeled conflict graph (§5.4). Packets arrive from
the network gateway and are enqueued at a central controller. The controller
releases these packets based on the transmission schedules derived by a packing
algorithm (§5.5). APs receive the packets and transmit them according to the
controller’s prescribed flexible channel assignment, and subsequently notify
the controller of all failures. The controller uses this feedback for scheduling
retransmissions and refining the conflict graph.

two example spectrum overlap configurations. The number of distinct non-zero
spectrum overlap configurations using the set of permissible center frequencies
(as detailed in §5.3) for two links operating on channel widths w1 and w2 can
be calculated as (w1 + w2)/wmin - 1. Hence, the total number of spectrum
overlap configurations taking into account |w| possible widths are

P
w1

P
w2⇣

(w1 + w2)/wmin - 1
⌘

, which evaluates to 2·|w|·(2|w| - 1) - |w|2. Thus,
computing the conflict graph using the approach in [71] would now require a
significant overhead ofO(N2·k·|w|·2|w+1|), making it intractable for real systems.
Next we show how our models significantly reduce this measurement overhead.

Modeling overview. The goal of the conflict graph module in Figure 5.4 is to
predict the delivery ratio on a link (transmitter-receiver pair) in the presence
of an interferer. It uses SINR based empirical models to predict the delivery

156

Modeling parameter Definition
Pi Transmitted power per unit Hz (at width wi)
A(.) Signal attenuation function
bStr(wi)

Signal strength (in dBm) per hertz between
transmitter t and receiver r using width wi

�S(wi,wj)
Modeled di�erence in received signal strength per hertz
when switching from width wi to width wj

⇠(wi,wj)
Correction function applied to �S(wi,wj)
for improving the model accuracy

N Noise floor per hertz

It,r(⌧,wt,wr)
Quantifies the spectral overlap between a transmitter t
using center frequency and width (ft,wt) and a receiver r using
center frequency and width (fr,wr). Here ⌧ = |ft - fr|

Br,wr(f)
Band-pass filter’s frequency response when
a channel width of wr MHz is used

bD(.) Function used to predict delivery ratio based on modeled SINR

Table 5.3: Parameters used in FLUID’s modeling procedure.

probabilities. In what follows, we first explain how our model computes the
SINR for perfect spectral overlap case (the link and the interferer use the same
center frequency and width), at all channel widths, using only measurements at
a single width. We then extend the model to compute the SINR for partial spectral
overlap case (the link and the interferer can use di�erent center frequencies and
widths). Finally, we derive the delivery prediction models using empirical
measurements and use the computed SINR to model the delivery under
interference. Figure 5.5 shows the overall modeling process. The parameters
used in the modeling procedure are summarized in Table 5.3.

Interpolating SNR at di�erent widths, using single width measurements.
To compute the SINR at the receiver, we have to measure the signal strengths of
the transmitter and the interferer at the receiver. However, as we show below,
the received signal strength per hertz depends on the channel width. This
would require us to carry out signal strength measurements at every channel
width, resulting in a measurement overhead of O(N·|w|). We now show that
it is possible to interpolate the received signal strength per hertz at di�erent
widths from measurements at only one width.

157

P
ro
fil
er

Str(5) Str(wtr)

i,_,fi,wi [sinr = Str(wtr) - intf – N]

D(.)

t,r,ftr,wtr

Sir(5) Sir(wi)
Itr(.)

-

intf

sinr delivery
probability

Signal Interpolation
Model

Spectum Overlap
Model

Model
Delivery Prediction

(.)S

(.)S

Link

Interferer

Figure 5.5: Sketch of the modeling process. Signal strengths of the transmitter
and the interferer at their respective widths are interpolated using their
corresponding signal strengths at 5 MHz. The amount of interference is then
computed based on the spectral overlap, which is used to calculate the SINR.
Finally, the SINR is input to the delivery prediction model to compute the
delivery under interference.

Let Pi and Pj be the transmitted power per unit Hz at widths wi and wj

respectively. Since the total power transmitted by the card is the same in both
cases, we have Pi·wi = Pj·wj. Now, the signal strength per hertz at the receiver
depends on the attenuation experienced by the wireless signal and is given
by si = A(Pi). We can approximate the attenuation A(.) as d-↵Pi, where ↵ is
the path-loss exponent [50]. We can compute the di�erence in received signal
strength per hertz, �S(wi,wj) as 10log(sisj) = 10log(Pi

Pj
) = 10log(wj

wi
).

However, we observed that the di�erence in signal strength per hertz for
our hardware only follow this relationship approximately. When we decreased
the channel width from 40 MHz to 5 MHz, we observed �S(wi,wj) to be 8.6
dB on average, instead of 9 dB (per unit Hz). To account for this di�erence, we
introduce a correction function ⇠(.). Let bStr(wi) denote the signal strength per
hertz (in dBm) between transmitter t and receiver r at width wi, derived using
empirical measurements. We have:

bStr(wi) = bStr(wj) + �S(wi,wj) + ⇠(wi,wj) (5.1)

158

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

D
el

iv
er

y
R

at
io

SNR (dB)

5 MHz
10 MHz
20 MHz
40 MHz

 D M1(.)
 0

 20

 40

 60

 80

 100

-0.3-0.2-0.1 0 0.1 0.2 0.3

%
 P

re
di

ct
io

ns

Error

M1
M2
M3
M4

Figure 5.6: (left) Delivery ratio as a function of mean signal strength for di�erent
widths, across all the receivers at 6 Mbps. We show measured delivery ratio
values and piece-wise linear interpolation as a function of SNR (model M1).
(right) CDF of modeling error for all the four models.

 0%
 10%
 20%

12 Mbps 24 Mbps 36 Mbps 48 Mbps 54 Mbps

R
M

SE M1 M2 M3 M4

Figure 5.7: Prediction error for all the models at di�erent PHY rates.

We empirically calculate the value of ⇠(.) using signal strength measure-
ments from our testbed. We assume the noise floor per hertz (N) to be constant
and the signal to be evenly distributed over the transmitted bandwidth. We
calculate the SNR at width w as bStr(w)-N. Figure 5.9 (left) shows the CDF of
signal strengths at di�erent widths for all links in our testbed. We observed that
the di�erence between measured and theoretical signal strength per hertz values
does not vary significantly, even for the most bursty link in our testbed. The
observed mean/std. deviation values across all links for ⇠(40, 5) were -0.34/0.13
dB, that for ⇠(20, 5) were -0.13/0.12 dB, and finally for ⇠(10, 5) were -0.08/0.16

159

dB (per unit Hz). Since these variations are low, in our model, we account for the
di�erence in the measured and theoretical signal strength per hertz using the
mean value of ⇠(.). We note that this calibration is a one-time overhead that is
necessitated when using the model for the first time with a particular hardware
chipset. Once the mean values of ⇠(.) are determined, these can be used to
accurately and e�ciently estimate SNR as follows. Instead of carrying out the
signal measurements at every width, we carry out O(N) signal measurements
at the lowest width of 5 MHz (as it has the longest range), and use Equation 5.1
to derive the SNR at all other widths.

Modeling SINR for perfect spectral overlaps at all widths. To model SINR
in the presence of an interferer, using width w, we first interpolate the signal
strength per hertz of the transmitter to the receiver, and that of the interferer
to the receiver i.e., we use Equation 5.1 to interpolate bStr(w) and bSir(w) from
corresponding signal measurements at 5 MHz, bStr(5) and bSir(5). Now, the SINR
can simply be calculated as bStr(w)-bSir(w)-N dB. We now provide extensions
to the previous model, to quantify the amount of interference for the partial
overlap case where the links can use any permissible center frequencies and
channel widths.

Modeling SINR for partial spectral overlaps at all widths and frequencies.
To characterize the amount of interference experienced by a receiver r using
a width wr and a center frequency fr, from an interferer t using a width
wt and center frequency ft, we extend the model developed in [106] to
calculate the interference factor, It,r(.) for a variable channel width system.
It,r(.) quantitatively captures the amount of spectral overlap between the
interferer and the receiver by calculating the area of intersection between a
signal’s spectrum and a receiver’s band-pass filter. We incorporate the interferer
and receiver channel bandwidths, wt and wr into this model to derive It,r(.):

It,r(⌧,wt,wr) =

Z+1

-1
Tt,wt(f)Br,wr(f- ⌧)df (5.2)

160

In above equation, the parameter ⌧ represents the di�erence in the center
frequencies of the channels i.e., ⌧ = ft - fr. The parameter Tt,wt(f) denotes
the transmitted signal’s power distribution across the frequency spectrum
when a channel bandwidth of wt MHz is used. We approximate Tt,wt(f) with
the corresponding transmit spectrum mask [106]. Finally, Br,wr(f) denotes
the band-pass filter’s frequency response when a channel of wr MHz is used.
Assuming the receive filter for a particular bandwidth to be same as the transmit
spectrum mask [106], for 802.11a we get:

Br,wr(f) = Tt,wt(f) =

8
>>>><

>>>>:

-40dB if |f- Fc| > (30/B)MHz
-28dB if (20/B)MHz 6 |f- Fc| < (30/B)MHz
-20dB if (11/B)MHz 6 |f- Fc| < (20/B)MHz
0dB otherwise

(5.3)

where Fc denotes the channel center frequency and bw is the channel
bandwidth (wt or wr) used and B is the bandwidth scaling factor calculated as
B=20/bw.

Now for two links (t1, r1) and (t2, r2) using center frequencies and widths
(f1,w1) and (f2,w2), the amount of interference experienced by r1 can be
characterized as intf = bSt2r1(w2) + 10log(It2,r1(|f2 - f1|,w2,w1)) dB. The
e�ective SINR would be bSt1r1(w1)-intf-N dB.

Predicting delivery ratio. In the last step of our modeling process, we predict
the delivery ratio for a link using the SINR estimated earlier. We first show
the relationship between SNR and the delivery ratio for an isolated link when
using di�erent widths, and then derive delivery prediction models.

Delivery under isolation. We perform O(N·|w|·k) measurements where each
node broadcasts in turn at all widths and rate combinations, and the remaining
nodes measure the average signal strengths and corresponding delivery ratios.
All nodes use the same center frequency and channel width. Figure 5.6 (left)
shows the SNR vs. delivery ratio for 231 link pairs for each of the four channel

161

widths at 6 Mbps.3 For values of SNR greater than 26 dB, the delivery ratio
is close to 1, whereas for SNR less than 18 dB, the deliver ratio is close to
0; for intermediate values of SNR, the delivery ratio increases with signal
strength. This behavior is similar across widths, since for a given signal strength,
the probability that a packet is successfully decoded is independent of width.
Furthermore, we observed a stronger correlation between SNR and delivery
ratio when viewed across individual receivers.

Based on this, the most relevant parameters for modeling delivery are:
SNR, channel width and the receiver under consideration. In light of this, we
explored four models to derive the delivery prediction function bD(.). In M1,
we model the delivery ratio as a piece-wise linear function of SNR. In M2, we
used receiver-specific curves including the SNR and channel width. M3 only
used receiver-specific curves along with SNR. M4 is similar to M3, except that
SNR is computed using Equation 5.1.

Delivery under interference. To predict the delivery under interference, we
compute the SINR using the techniques mentioned before and feed this into
one of the four delivery prediction models. We now evaluate the accuracy of
these models in the presence of an interferer for the perfect spectral overlap
case.

In order to measure the ground truth, we carry out the followingO(N2·k·|w|)

measurements: we pick a pair of nodes in turn, and both of them simultaneously
transmit data while the rest of the nodes measure the signal strengths and
corresponding delivery ratios. This process is repeated for all channel width
and rate combinations. We note that all nodes use the same center frequencies
and widths. Figure 5.6 (right) shows the CDF of the error for all the four models
at 6 Mbps, and Figure 5.7 shows the RMSE (root mean square error) for the
models across di�erent PHY rates. We observe that all the four models perform
reasonably well. Models M2, M3, and M4 have lower error compared to M1,
owing to the use of receiver specific curves. For these models, the error is
less than 10% for 90% of the predictions, with maximum error being less than
30% (Fig. 5.6 (right)). The overall RMSE for all the models were: 14.2%, 8.7%,

3This behavior also holds for all the other rates. The SNR curves are shifted to the right, as
higher rates require a higher SNR to decode a packet correctly.

162

-40-60 +40 +60f1-20 +20

-20 dB
-28 dB
-40 dB

Frequency (MHz)

Power Spectral
Density (dB)

f20 -40-60 +40 +60-20 +20
Frequency (MHz)

fc

t1, r1 t1, r1
t2, r2t2, r2

Figure 5.8: Example spectrum overlap scenarios. (left) Two links (t1, r1) and
(t2, r2) using a channel width of 20 MHz and center frequencies f1 and f2
separated by 20 MHz. (right) Two links (t1, r1) and (t2, r2) using the same
center frequency (fc), but di�erent channel widths of 40 MHz and 20 MHz
respectively.

8.9%, and 9.6%. We observe that M2 and M3 have very similar performance,
confirming that the delivery ratios were independent of the width used. More
importantly, M4 which uses signal interpolation has an accuracy which is quite
close to M2. This is a useful result as it helps us reduce the conflict graph
computation overhead to O(N·k) for a network where all links can operate on
any width while using the same center frequency. We therefore choose M2
for delivery prediction in FLUID. We also evaluated the models for the partial
overlap case, and observed similar delivery prediction accuracy numbers.

Packing accuracy. We now evaluate both the partial and perfect spectrum
overlap cases using a more intuitive measure — error in predicting the minimum
frequency separation required to resolve the conflict between any two links.
Note that over-predicting the frequency separation leads to poor usage of
spectrum, while under-prediction can result in throughput degradation.

We experimented with 500 link-interferer (tr-i) combinations (across
di�erent PHY rates) in our testbed, where the link and the interferer can
use any widths, wtr and wi. In each case we measured bfmin, the minimum
frequency separation required between the link and the interferer such that
the conflict is resolved. We also compute the predicted separation fmin using
the It,r(.) model, and a naive packing approach where the center frequencies
are simply separated by (wtr +wi)/2 MHz. We then compute the di�erence

163

20
40
60
80

100

 10 20 30 40 50 60 70 80

C
D

F

Signal Strength (dBm)

5 MHz
10 MHz
20 MHz
40 MHz 20

40
60
80

100

-40-20 0 20 40 60

%
 P

re
di

ct
io

ns

Error (MHz)

naive
I t,r

Figure 5.9: (left) CDF of signal strengths in the testbed for di�erent channel
widths. (right) CDF of error in estimating the minimum channel separation
(�fmin) across di�erent PHY rates and channel width combinations, using
naive and It,r models.

in the measured and predicted frequency separation �fmin = fmin - bfmin.
Figure 5.9 (right) shows the CDF of�fmin for both the models. The It,r(.)model
results in better spectrum reuse by predicting �fmin correctly in 87.6% of the
cases. The naive model predicts only 52% of the cases accurately.

Example scenarios. We now present two example scenarios and show how
It,r(.) can be used to model the interference.

Example 1 - How much frequency separation is needed? Consider the packing
in Figure 5.8 (left), where the two 20 MHz links (t1, r1) and (t2, r2) have their
center frequencies separated by of 20 MHz. Is the frequency separation enough?
To answer this we have to estimate the delivery ratio at both the receivers for this
packing: the interference factor for r1 in this case turns out to be It2,r1(20, 20, 20)
= 0.0571, which is reduction in the interferer signal by 12.43 dB. Hence, the SINR
at r1 in this case would be bSt1r1(20)-bSt2r1(20)+12.43 dB. If this is not su�cient
for bD(r1,SINR) to be close to 1, then the links have be separated further apart.
For e.g., at 25 MHz, the It2,r1(25, 20, 20) = 0.0081 which results in SINR at r1

of bSt1r1(20) - bSt2r1(20) + 20.91 dB i.e., an increase in SINR by around 8.5 dB
which might su�cient for the delivery ratio to be close to 1. Similarly, we can
estimate the frequency separation needed for r2.

164

Example 2 - Can we improve spatial reuse by narrowing widths? Consider two 40
MHz links (t1, r1) and (t2, r2) which are on the same center frequency. The
interference factor for both receivers is 1, SINR at r1 is bSt1r1(40)-bSt2r1(40) and
that at r2 is bSt2r2(40)-bSt1r2(40). How does the interference relationship change
when (t2, r2) switches to 20 MHz, while not changing the center frequency?
The resulting packing is shown in Figure 5.8 (right). When (t2, r2) switches to
20 MHz, the interference factor for r2 remains the same (i.e., It1,r2(0, 40, 20) = 1),
since there is a complete spectral overlap for r2. However, bSt2r2(20) is around 3
dB higher than bSt2r2(40) (Equation 5.1). This results in SINR at r2 increasing
by 3 dB. Whereas, for r1 , the interference factor It2,r1(0, 20, 40) = 0.49, which
is around -3.1 dB. Therefore, the new SINR becomes bSt1r1(40) - bSt2r1(20) -
3.1 dB, i.e., bSt1r1(40) - bSt2r1(40) + 3 - 3.1 dB implying, that the SINR at r1

almost remains the same. That is, by narrowing the channel width of a link,
we could improve its SINR without a�ecting the SINR of the other link. In our
experiments, we found a number of such instances where narrowing channel
width can provide opportunities for spatial reuse (§5.7).

External interference. In order to handle external interference, the model can
be modified as follows: the receivers can measure the increased noise floor,
and report this back along with the signal strength measurements. The SINR
computation can then use a receiver specific noise floor Nr, instead of a constant
N to improve the accuracy of delivery prediction.

Summary. We sketch the modeling process in Figure 5.5. We carry out O(N·k)
measurements at the lowest channel width, 5 MHz. In order to predict the
delivery ratio of link in the presence of an interferer, we first interpolate the
signal strengths of the transmitter and the interferer at their widths. Based
on the spectral overlaps, we compute the interference using the It,r(.) model.
Finally, we calculate the SINR, which is then input to bD(.) to estimate the
delivery probability.

165

�.� ������������ �������

Assume that a set of packets arrive at the FLUID controller. Now, based on the
conflict graph, the next step for the controller is to “pack" the transmissions
i.e., determine the subset of packets that can be scheduled for transmission
simultaneously, along with an assignment of the center frequencies and channel
widths. In FLUID, such a decision is made at the time granularity of an epoch.
We discuss the factors that determine the epoch duration in §5.6.

Scheduling complexity: The scheduling problem to optimize throughput by
assigning appropriate time-frequency blocks is NP-hard [168]. The size of
this problem is

Pr=N
r=1

�
N
r

�
|F|r, where

�
N
r

�
is number of the ways in which the

controller can pick r out of N transmissions, and |F|r is all possible frequency
and width combinations for r APs.

Packing heuristics. In order to reduce the search space in scheduling, we use
two heuristics explained below:

Throughput estimation: The throughput estimation algorithm, estimateTput()
(Algorithm 1) takes a set of packed transmissions T=(t, r, f,w), and returns
a vector of estimated individual transmission throughputs. The throughput
of an individual transmission Ti is calculated as follows: the e�ective signal
strength from each of the other T-{Ti} transmissions is calculated using the
modeling techniques presented in §5.4, and is summed up to calculate the
total interference (lines 8-10). This then used to compute the SINR. Finally, the
controller uses the SINR to estimate the throughput by picking the best PHY
data rate (lines 14-19): it iterates through the delivery ratio curves for each data
rate, and picks the rate which maximizes the throughput (data rate ⇥ delivery
probability).

RaC-Pack: In FLUID, the central controller uses a randomized algorithm,
RaC-Pack (Randomized Compaction based Packing) to derive the transmission
schedules. RaC-Pack (Algorithm 1) takes the FIFO queue of packets at the
controller as input and creates a set of packed transmissions for each epoch. We
first describe the compaction step that can be applied to a packed transmission
set so as to maximize a particular objective.

166

Algorithm 1: Model based Throughput Estimation (estimateTput)
Input : Set of packed transmissions T = {t, r, f,w}, Delivery ratio model, bD(.),

Signal correction model, ⇠(.)
Output :Estimated throughput for T

1
�!
tvtot 0

2 foreach Ti = (ti, ri, fi,wi) 2 T do
3 (dT-{Ti}

Ti
,drbest) ⇢(Ti,T - {Ti})

4
�!
tvtot[i] (dT-{Ti}

Ti
⇤ drbest)

5 return �!tvtot
6 Procedure ⇢(Ti,T 0):
7 Let Ti = {ti, ri, fi,wi}; intf 0
8 foreach Tj = (tj, rj, fj,wj) 2 T 0 do
9 Stj,ri(wj) bStj,ri(5) + �S(wj, 5) + ⇠(wj, 5)

10 S 0
tj,ri = Stj,ri(wj)+ 10 log(If(|fj - fi|,wj,wi)) intf = intf+ S 0

tj,ri

11 Sti,ri(wi) bSti,ri(5) + �S(wi, 5) + ⇠(wi, 5)
12 sinr = Stj,ri(wi)- intf
13 max_tput 0

/* SINR based rate adaptation */
14 foreach dr 2 R do
15 cur_tput dr ⇤ bD(ri,dr, sinr)
16 if cur_tput > max_tput then
17 max_tput cur_tput
18 drbest dr

19 dT 0

T bD(ri,dr, sinr)

20 return (dT 0

T ,drbest)

Compaction Step: Keeping the center frequency and width assignments of
all the other transmissions the same, the compaction step (lines 22-29) assigns a
center frequency and width to a particular transmission, Ti that maximizes a
criteria (lines 24-28). We supply the objective function (computeOBJ) with one
of the following two criteria: (i) maximize the total throughput (FLUID-thr)
or (ii) find the best min-max throughput (FLUID-fair) which results in better
fairness, at the cost of throughput. The function estimateTput, is used to estimate
throughput during each iteration (line 26).

167

Algorithm 2: RaC-Pack: Transmission Packing
Input :fifoQ (FIFO queue of packets), vQ1 . . . vQn (per-client virtual packet

queues), F = {(f,w)} (set of frequency f, width w combinations)
Output : Set of packed transmissions Tnext = {(t, r, f,w)}

1 Tnext 0, Tcur 0
2 phead Dequeue(fifoQ); (f1,w1) F[0]
3 T1 (tx(phead), rx(phead), f1,w1); packedAPs tx(phead)

4 (Tnext,�!tvbest) COMPACTION({T1}, 0); Tcur Tnext

5 ri RAND(0 . . .n- 1)
6 for i in 0 . . .n do
7 next (ri + i) mod n
8 pnext Dequeue(vQ next)
9 if tx (pnext) 2 packedAPs then

10 continue
11 Tnext (tx(pnext), rx(pnext), f1,w1)
12 Tcur Tnext

S
Tnext

13 while Tcur 6= Tprev do
14 Tprev Tcur; k |Tcur|
15 rj RAND(0 . . . k- 1)
16 for j in 0 . . . k do
17 next 0 (rj + j) mod k

18 (Tcur,�!tvcur) COMPACTION(Tcur,next 0)

19 if computeOBJ (�!tvcur,�!tvbest,criteria) then
20 // �!tvcur improves over �!tvbest for a given criteria

21
�!
tvbest

�!
tvcur; Tnext Tcur; packedAPs packedAPs

S
tx(pnext)

22 return Tnext;
23 Procedure COMPACTION (T, i):
24

�!
tvbestlocal 0; T 0 T

25 foreach (f,w) 2 F do
26 T[i] (ti, ri, f,w)

27
�!
tvcur estimateTput(T)

28 if computeOBJ (�!tvcur,�!tvbest, criteria) then
29

�!
tvbestlocal

�!
tvcur; T 0 T

30 return (T 0,�!tvbestlocal);

168

The RaC-Pack scheduling algorithm works as follows: In order to prevent
starvation, RaC-Pack always schedules the first packet in FIFO queue for
transmission in the current epoch. It then applies the compaction step to this
transmission to find the ‘best’ packing (lines 2-4). Next, the algorithm goes
through the rest of the transmissions in a randomized order, and adds them to
the transmission schedule if they improve the throughput (lines 5-20). This is
done by adding a transmission to the currently packed set, and then repeatedly
invoking the compaction step for the each of the transmissions in succession.
The order of invocation is randomized by using a random permutation of
the transmissions. This compaction process (lines 13-18) is repeated until the
objective function stops improving. We note that this iterative process will
converge, as in each iteration, the objective function progressively improves the
throughput vector based on the specified criteria. The total number of rounds
for the algorithm can vary with the topology and tra�c pattern, and the worst
case complexity is O(|F|N). We set an upper bound of 50 rounds, and in our
experiments with di�erent topologies, we found that the algorithm converges
after approximately 21.3 rounds on an average. In §5.7, we compare RaC-Pack
to the brute-force approach of evaluating all possible schedules.

�.� �������������� �������

Our implementation of FLUID consists of: (a) a central controller that generates
the conflict graph and uses the RaC-Pack algorithm to schedule packets. We
have implemented this on a Linux PC (3.33 GHz dual core Pentium IV, 2 GB
DRAM) (about 3500 lines of C code and a few hundred lines of Perl scripts). (b)
Soekris based wireless APs and clients, modified to implement channel and
width switching functionality. The scheduler is a kernel module that utilizes
high-resolution timers. In order to reduce communication path latencies, we
have implemented a direct path between the Ethernet and WiFi drivers for the
APs. This allows packets received on the wired interface to be immediately
forwarded to the wireless interface, bypassing the kernel network queue. We
also made driver modifications to ensure that transmit bu�ers are not flushed,
and that clients do not disassociate with the AP when switching frequencies

169

or widths. We now highlight some of the other implementation aspects and
system design issues that arise when deploying FLUID.

Handling Uplink Transmissions. To account for uplink (client-to-AP) trans-
missions, we use a two-phase TDMA approach [103, 105]: the first phase uses
flexible channelization for downlink tra�c, and the second phase is for uplink
tra�c using DCF . The controller adapts the time for each phase according to
the downlink/uplink tra�c ratio (based on queue lengths). By default, since
most tra�c in enterprise WLANs is downlink [148], we use a 4:1 ratio between
the downlink and uplink phases. Carrier sensing and ACKs are disabled in the
downlink phase, since they add overheads in a TDMA MAC [103]. Instead, we
use block ACKs that are transmitted in the uplink phase. FLUID controller uses
this feedback to schedule retransmissions and to refine the modeled conflict
graph. To assign channel widths and frequencies in the uplink phase, we use a
simple approach: each AP groups its clients into one of four channel widths,
based on the widest channel width each client can successfully communicate
on. During the uplink phase, FLUID APs switch to their respective center
frequencies, and operate on one of the channel widths; over time, the APs
cycle through all channel widths with average dwell times at each width being
proportional to aggregate uplink tra�c from each group. We realize that an
optimal assignment for the uplink phase is a challenging problem, and are
actively investigating solutions to this problem.

Association. APs are modified to beacon at the lowest channel width
of 5 MHz, which has the most range. The center frequencies for beacon
transmissions are decided using RaC [107], a conflict-aware fixed-width channel
assignment mechanism. Client drivers are modified to perform passive scans
using a width of 5 MHz. In our current implementation, we do not support
active scanning.

Co-ordinated switching. To inform the clients about their future schedules,
APs use the 802.11 Beacon Information Element (BIE). BIE consists of a list of
[epo�, phase, chan, clist] where epo� is the epoch o�set, phase indicates uplink
or downlink, chan is the frequency and width, and clist is the list of clients for
which tra�c has been scheduled in the epoch. To account for beacon losses, the
APs also insert a layer 2.5 header in the data packets with information about

170

future schedules. We use built-in Atheros clock synchronization to synchronize
the epoch boundaries at APs and the clients.

Implementation overheads. We instrumented the drivers to calculate the de-
lays in controller-AP-client communication path and channel/width switching.
We observed that the overheads are dominated by the channel and width
switching component; the mean/std. deviation for which was 4.11/0.244 ms.
To amortize these overheads, (i) we set the epoch duration to 6 ms, and (ii) we
use two interfaces at the APs. While one interface is active during an epoch
(i.e., it is involved in communication), the other interface prepares for the next
epoch. These switching overheads could reduce in future; emerging wireless
cards have switching latencies of less than 100 µs [6], while prior work in
solid state electronics has shown that this delay can be reduced to as low as 40
µs [46]. Finally, in order to maintain an accurate conflict graph that can take
into account the dynamics of the environment, it is important that the signal
strengths are frequently updated. Since there is little external interference in
our experimental testbed, which is also likely in other enterprise networks,
we chose a measurement periodicity of 10 seconds. However, this is a tunable
parameter, and in a more noisy environment one could reduce the measurement
periodicity. Similar to previous systems like DIRC [103] and CENTAUR [148],
each measurement instance in FLUID lasts for 4 ms. We note that the results in
§5.7 include these measurement overheads.

�.� ����������

Our testbed evaluation aims at characterizing the throughput improvements
with FLUID and demonstrate its feasibility on commodity 802.11 hardware.
We first evaluate FLUID over a large number of canonical topologies to
systematically characterize the performance gains that stem from di�erent
components. We show the results for both max-throughput (FLUID-thr) and
best min-max throughput (FLUID-fair). Next, we evaluate FLUID over a 23
node representative topology and quantify the performance gains. We perform
the experiments at di�erent fixed PHY rates and with dynamic rate adaptation.
When using rate adaptation, we run DCF and CENTAUR using SampleRate,

171

Se
ct

io
n

Ev
al

ua
tio

n
co

m
po

ne
nt

an
d

se
tu

p
Su

m
m

ar
y

of
re

su
lts

M
icr

ob
en

ch
m

ar
ki

ng
th

em
od

el
§

5.
4

(F
ig

.5
.7

,F
ig

.5
.6

(b
))

A
cc

ur
ac

y
of

D
el

iv
er

y
M

od
el

s(
23

1
lin

k
pa

irs
,d

i�
er

en
tP

H
Y

ra
te

s)
RM

SE
:1

4.
2%

,8
.7

%
,8

.9
%

,a
nd

9.
6%

§
5.

4
(F

ig
.5

.9
)

Pa
ck

in
g

A
cc

ur
ac

y
(5

00
lin

k-
in

tf
co

m
b.

,d
i�

er
en

tP
H

Y
ra

te
s)

A
cc

ur
ac

y:
87

.6
%

(I
t

,r
),

52
%

(n
ai

ve
)

§
5.

7
(F

ig
.5

.1
1)

G
ai

ns
w

/
pa

ck
in

g
(3

31
2-

lin
k

to
po

lo
gi

es
,R

at
e:

A
ut

o/
di

�e
re

nt
PH

Y
ra

te
s)

M
ed

ia
n

ga
in

(T
hr

./
M

H
z)

:1
.5

1⇥
(b

es
tD

CF
)

G
ai

ns
in

sp
ec

ifi
cs

ce
na

rio
s

§
5.

7
(F

ig
.5

.1
0(

a)
,T

ab
.5

.5
)

Cl
ie

nt
sw

ith
di

�e
rin

g
SN

Rs
U

p
to

1.
68
⇥

,M
ed

ia
n:

1.
40
⇥

(b
es

tD
CF

),
(2

41
1

A
P-

2
cl

ie
nt

to
po

lo
gi

es
,R

at
es

:A
ut

o/
di

�e
re

nt
PH

Y
ra

te
s)

1.
38
⇥

(C
EN

TA
U

R)
§

5.
7

(F
ig

.5
.1

0(
b)

,T
ab

.5
.6

)
Cl

ie
nt

su
nd

er
in

te
rfe

re
nc

e
U

p
to

2⇥
,M

ed
ia

n:
1.

35
⇥

(b
es

tD
CF

),
(1

94
2-

lin
k

to
po

lo
gi

es
,R

at
es

:A
ut

o/
di

�e
re

nt
PH

Y
ra

te
s)

1.
32
⇥

(C
EN

TA
U

R)
§

5.
7

(F
ig

.5
.1

2(
a)

)
H

id
de

n
lin

ks
(u

ns
ch

ed
ul

ed
V

s.
sc

he
du

le
d)

M
ed

ia
n:

1.
74
⇥

(b
es

tD
CF

),
(3

46
2-

lin
k

to
po

lo
gi

es
,R

at
es

:A
ut

o/
di

�e
re

nt
PH

Y
ra

te
s)

Av
g:

1.
88
⇥

(D
CF

-fl
ex

),
up

to
1.

47
⇥

(C
EN

TA
U

R)
§

5.
7

(F
ig

.5
.1

2(
b)

)
Ex

po
se

d
lin

ks
(u

ns
ch

ed
ul

ed
V

s.
sc

he
du

le
d)

U
p

to
1.

97
⇥

(b
es

tD
CF

),
M

ed
ia

n:
1.

51
⇥

(b
es

tD
CF

),
(3

46
2-

lin
k

to
po

lo
gi

es
,R

at
es

:A
ut

o/
di

�e
re

nt
PH

Y
ra

te
s)

1.
51
⇥

(D
CF

-fl
ex

),
1.

31
⇥

(C
EN

TA
U

R)

G
ai

ns
on

ar
ep

re
se

nt
at

iv
et

op
ol

og
y

§
5.

7
(F

ig
.5

.1
3,

Ta
b.

5.
7

)
U

D
P

th
ro

ug
hp

ut
(2

3-
no

de
to

po
lo

gy
,R

at
e:

A
ut

o/
di

�e
re

nt
PH

Y
ra

te
s)

M
ed

ia
n:

1.
59
⇥

(b
es

tD
CF

),
1.

34
⇥

(C
EN

TA
U

R)
§

5.
7

(F
ig

.5
.1

3)
TC

P
th

ro
ug

hp
ut

(2
3-

no
de

to
po

lo
gy

,R
at

e:
A

ut
o)

M
ea

n:
1.

63
⇥

(b
es

tD
CF

),
1.

33
⇥

(C
EN

TA
U

R)
§

5.
7

Pe
rfo

rm
an

ce
of

Ra
c-

Pa
ck

(2
3-

no
de

to
po

lo
gy

,R
at

e:
A

ut
o)

0.
95
⇥

(b
ru

te
fo

rc
e)

,0
.9

8⇥
(R

ac
-P

ac
k

w
/

ac
tu

al
CG

)

Ta
bl

e
5.

4:
Su

m
m

ar
y

of
th

e
re

su
lts

.G
ai

n
is

re
po

rt
ed

fo
rt

hr
ou

gh
pu

tu
nl

es
so

th
er

w
is

e
no

te
d.

172

Gains over best DCF config. Gains over CENTAUR
Scheme 12 Mbps 36 Mbps 54 Mbps 12 Mbps 36 Mbps 54 Mbps

FLUID-thr 1.43⇥ 1.39⇥ 1.47⇥ 1.41⇥ 1.42⇥ 1.46⇥
FLUID-fair 1.28⇥ 1.21⇥ 1.26⇥ 1.23⇥ 1.27⇥ 1.25⇥

Table 5.5: Median gains (from using client-centric widths) over best DCF
configuration and CENTAUR.

and for FLUID, we use the SINR based rate adaptation mechanism (§5.5).
We assume that a total of 40 MHz spectrum is available. We quantify the
gains of FLUID over DCF with fixed channel width configurations i.e., (i) DCF
using a single 20 or 40 MHz channel (DCF-20 or DCF-40) and (ii) DCF using
two 20 MHz channels and RaC-based channel assignment [107], denoted by
DCF-2x20. To understand the gains attributable to flexible channelization
(i.e., variable channel widths and packing) alone, we also compare with DCF
employing flexible channelization (DCF-flex) and CENTAUR, a fixed channel
width centralized scheduling (TDMA) approach which can exploit exposed
terminals [148]. In our experiments, we operate CENTAUR at 40 MHz. The
tra�c on all the links is backlogged. We report the aggregate throughput in
each case, and use Jain’s Fairness Index [73] to report overall fairness. Table 5.4
summarizes the results presented in the chapter.

Gains from using client-centric widths

FLUID improves the throughput by using client-centric, link quality width
aware assignment (e.g., case E1 in §5.2). To evaluate the gains from this aspect,
we experiment with 241 single AP-two client topologies with both the clients
having SNRs that di�er by at least 3 dB. When experimenting with di�erent
rates, we only considered cases where the delivery probability of both links
was greater than 0.9 at 20 MHz.

— Di�erent PHY rates: Table 5.5 shows that FLUID-thr and FLUID-fair
achieve median throughput gains of 44% and 26% over the best DCF configura-
tion (DCF-20 or DCF-40), and 41% and 27% over CENTAUR across di�erent
PHY rates. CENTAUR and DCF-40 do not perform well, as the throughput of
the lower SNR client su�ers when using a 40 MHz channel. Although DCF-20

173

 0
 20
 40
 60
 80

 100

 1 1.2 1.4 1.6C
D

F
(%

 li
nk

 p
ai

rs
)

Throughput gain

Perf. w/ rate adaptation Perf. w/ rate adaptation

CENTAUR
FLUID-thr

FLUID-fair
 0

 20
 40
 60
 80

 100

 1 1.2 1.4 1.6 1.8 2C
D

F
(%

 li
nk

 p
ai

rs
)

Throughput gain

Perf. w/ rate adaptation Perf. w/ rate adaptation

CENTAUR
FLUID-thr

FLUID-fair

Figure 5.10: Throughput gains with rate adaptation for CENTAUR, FLUID-thr
and FLUID-fair over DCF with fixed channel widths from (left) link quality
aware width assignment (241 single AP - two client topologies) (right) increased
transmission concurrency (194 two-link topologies with varying degrees of
conflict).

improves the SNR by operating the links at 20 MHz, the overall throughput
reduces due to spectrum wastage. FLUID operates the higher SNR link at 40
MHz, and the lower SNR link at 20 MHz, with the AP switching between these
two widths. FLUID-fair provides lesser gains in order to improve fairness.
Fairness indices [73] for FLUID-thr and FLUID-fair were 0.9 and 0.99, while
those for DCF-40 and CENTAUR were 0.56 and 0.99.

— Rate adaptation: Figure 5.10 (left) shows the CDF of throughput gains
for CENTAUR and FLUID over the best DCF configuration. We observe that
FLUID-thr and FLUID-fair can improve the aggregate throughput up to 68%
and 55% over DCF respectively, while improving fairness. The median gains
over DCF were around 40% and 25%, while those over CENTAUR were 38%
and 23%. The individual throughput gains for the lower SNR link in these cases
were much higher.

174

Gains over best DCF config. Gains over CENTAUR
Scheme 12 Mbps 36 Mbps 54 Mbps 12 Mbps 36 Mbps 54 Mbps

FLUID-thr 1.41⇥ 1.47⇥ 1.49⇥ 1.32⇥ 1.39⇥ 1.46⇥
FLUID-fair 1.23⇥ 1.29⇥ 1.26⇥ 1.2⇥ 1.26⇥ 1.27⇥

Table 5.6: Median gains under interference across di�erent PHY rates for FLUID-
thr and FLUID-fair over the best DCF configuration and CENTAUR for 194
topologies.

Gains under interference

FLUID improves the network throughput by choosing widths which result in
increased transmission concurrency under interference (e.g., case E3 in §5.2).
To illustrate this, we experiment with 194 one-way hidden interference cases.

— Di�erent PHY rates: Here, DCF-40 is unable to resolve the conflict and
performs poorly. DCF-2x20 resolves it by assigning the links di�erent channels,
whereas CENTAUR does so by serializing the transmissions. However, in many
cases, narrowing the channel width resolves the conflict due to increase in SINR.
FLUID-thr always operates the interfering link at 40 MHz and the other link at
20 MHz, thus allowing simultaneous transmissions. To achieve better fairness,
FLUID-fair periodically reserves an epoch for the interfered link. Table 5.6
shows that FLUID-thr and FLUID-fair achieve consistent gains (up to 49% and
29%) across di�erent PHY rates due to increased transmission concurrency.

— Rate adaptation: Figure 5.10 (right) shows that with rate adaptation, FLUID
provided up to 2⇥ gains over the best DCF configuration. Median gains for
FLUID-fair and FLUID-thr were 28% and 35%. Corresponding gains over
CENTAUR were 26.2% and 32%. In some cases, CENTAUR performs better
than DCF-2x20 as operating the links on two adjacent 20 MHz channels was
not enough to reduce the conflict.

Gains from conflict-aware packing

FLUID’s gains also stem from (i) e�cient transmission packing using partial
spectral overlaps and (ii) avoiding harmful packing by separating the center

175

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80

C
D

F
(%

 li
nk

s)

Freq. separation (MHz)

40 MHz
20 MHz
10 MHz

5 MHz
 0

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F
(%

 li
nk

s)

Gain (Thr./MHz)

Packing
Gain

Figure 5.11: (left) Minimum center frequency separation required for conflict
resolution at di�erent widths (right) CDF of gain from intelligent packing across
331 link pairs.

frequencies by at least fmin (§5.4). We experimented with 331 two-link
topologies, where both the links were using the same channel width w.
Figure 5.11 (right) shows that fmin for these links varies — some links benefit
from e�cient packing (fmin <w) and others need greater frequency separation
(fmin > w). Figure 5.11 (right) shows the CDF of packing gain in terms of
throughput per unit MHz. For links with fmin > w, a maximum gain of
4⇥ (with median 51%) was observed as DCF su�ered from losses due to
interference. For links with fmin < w, e�cient packing resulted in gains up to
70%.

Unscheduled and scheduled approaches

To compare scheduled and unscheduled approaches employing flexible chan-
nelization, we experiment on 346 two-link topologies that fall into one of two
categories (when using 40 MHz): (a) conflicting links or hidden terminals (b)
non-conflicting links and exposed terminals. We compare FLUID with three
schemes: (1) DCF-fixed: this is the best amongst all DCF configurations where
both the links use the same channel width (2) DCF-flex: this is the best amongst
all DCF configurations where links can use any permissible combination of

176

channel widths and frequencies, and (3) CENTAUR operating on single channel
of 40 MHz.

— Conflicting/Hidden links: Figure 5.12 (left) shows the results for cases
where DCF-fixed is unable to resolve the hidden interference. DCF-flex provides
significant throughput gains over DCF-fixed (e.g., 63% at 12 Mbps and 56%
at 54 Mbps). However, DCF-flex alone is unable to resolve the conflicts for
many other links (e.g., 58% of the links at 54 Mbps). CENTAUR is able to
resolve all conflicts by virtue of scheduling. Interestingly, DCF-flex performs
better than CENTAUR for a certain fraction of links (e.g., 21% of the links at
54 Mbps with median gain of 33%) — variable channel widths help resolve
the conflict, allowing the links to transmit simultaneously. FLUID performs
the best (median gain of 74% over DCF-fixed) by using scheduling at 40 MHz
when it is not possible to resolve conflicts, and using variable channel widths
otherwise, to achieve the maximum throughput.

— Non-conflicting and exposed links: Here, CENTAUR and FLUID, both
exploit the exposed terminals available at 40 MHz in our topologies e.g., at 12
Mbps and 54 Mbps, throughput for 44% and 21% of the links is improved by
up to 2⇥ (Figure 5.12 (right)). The median gain for these exposed terminals
was 47%. FLUID performs better than CENTAUR, as it exploits the additional
exposed terminals that arise when using a combination of di�erent channel
widths. At 12 and 54 Mbps, the median gain over CENTAUR for these links
was 34% and 42%. Figure 5.12 (right) also shows that FLUID is particularly
useful at higher rates, as the number of exposed links available when using
only 40 MHz are reduced.

— Rate adaptation: With rate adaptation, the median throughput gain of
DCF-flex over DCF-fixed was 34% across di�erent conflicting link scenarios.
FLUID was able to resolve all conflicts, and for exposed links, we observed
gains of up to 1.97⇥, with median gains of 51% over DCF-fixed and 31% over
CENTAUR. We note that the gains were much higher in the presence of hidden
links when using SampleRate because the links fall back to a lower rate in case
of DCF-fixed, while FLUID can continue to operate at a higher rate.

177

 0

 25

 50

 75

 100

 0 5 10 15 20

Throughput (Mbps)

C
D

F
 (

%
 li

n
k

p
a
ir
s)

HT 12 Mbps
(40 MHz)(a)

(b)

DCF-fixed

 0

 25

 50

 75

 100

 0 10 20 30 40 50

Throughput (Mbps)

C
D

F
 (

%
 li

n
k

p
a
ir
s)

HT 54 Mbps
(40 MHz)

DCF-flex

 0

 25

 50

 75

 100

 10 20 30 40

Throughput (Mbps)

C
D

F
 (

%
 li

n
k

p
a
ir
s)

ET 12 Mbps
(40 MHz)

CENT

 0

 25

 50

 75

 100

 30 40 50 60 70

Throughput (Mbps)

C
D

F
 (

%
 li

n
k

p
a
ir
s)

ET 54 Mbps
(40 MHz)

FLUID

Figure 5.12: The plot shows the CDF of throughputs at 12 and 54 Mbps (40
MHz bandwidth) for two categories: (left) conflicting links or hidden terminals
(right) non-conflicting links and exposed terminals. We experimented with 346
two-link topologies for di�erent configurations: DCF-fixed (ii) DCF-flex (iii)
CENTAUR and (iv) FLUID.

Performance on a representative topology

We evaluate FLUID on a representative topology by emulating the structure of
in-building WLANs. We place our testbed APs near the production APs and
clients are randomly distributed into o�ces without any bias. Our topology
consists of 8 APs and 15 clients. For FLUID, we use the modeled conflict
graph (§5.4). We also compute the actual conflict graph using bandwidth
tests [71] at all possible frequencies and widths. We assume that a total of 40
MHz is available and compare FLUID with DCF-2x20, DCF-40, and CENTAUR.
The uplink tra�c load is 20% of the downlink. Throughput numbers are
averaged over 15 runs. Unless otherwise stated, experiments are run using rate
adaptation.

178

 0
 4
 8

 12
 16
 20
 24
 28

TC
P

Th
r.

(M
bp

s)

Client Index (1-15)

Performance with rate adaptation

DCF-2x20
[107.4 Mbps, 0.93]

DCF-40
[117.2 Mbps, 0.84]

CENTAUR
[143 Mbps, 0.91]

FLUID
[191.7 Mbps,0.93]

 0
 4
 8

 12
 16
 20
 24
 28

U
D

P
Th

r.
(M

bp
s) DCF-2x20

[116.6 Mbps, 0.94]
DCF-40

[124.3 Mbps, 0.78]
CENTAUR

[147.8 Mbps, 0.92]
FLUID

[197.2 Mbps,0.96]

Figure 5.13: Throughput achieved with rate adaptation for a 23 node (8 AP,15
Client) topology. Plot shows the UDP throughput (top) and the TCP throughput
(bottom). 10th and 90th percentile values shown by error bars. Sum of values,
Jain’s Fairness are shown in parenthesis.

— UDP throughput: Figure 5.13 (top) shows the UDP throughput for
di�erent schemes with rate adaptation. The overall gain was 59% over the
best DCF configuration (DCF-40) and 34% over CENTAUR. FLUID significantly
improves throughputs of clients which have a lower SNR at 40 MHz (clients 5
and 11), avoiding harmful packing (clients 8 and 9), and increasing transmission
concurrency by exploiting partial overlaps and using variable widths whenever
possible (e.g., clients 2 and 6). The 10th, 50th, and 90th percentile gains over
DCF in this case were 2.66⇥, 1.54⇥ and 1.21⇥.

— TCP throughput: In this experiment, we run bi-directional TCP tra�c with
80:20 downlink/uplink split. Figure 5.13 (bottom) shows the TCP throughputs
for each scheme with rate adaptation. We observe that the average gains over
DCF-40 and CENTAUR were 63.5% and 34%.

— Performance of RaC-Pack algorithm: We evaluated the performance of RaC-
Pack algorithm used in FLUID for this topology by comparing it with the
brute force approach which picks the ‘best’ set of schedules, after evaluating

179

Gains over best DCF config. Gains over CENTAUR
PHY Rate 10th pc 50th pc 90th pc 10th pc 50th pc 90th pc

Fixed 6 Mbps 2.41⇥ 1.62⇥ 1.21⇥ 2.17⇥ 1.31⇥ 1.09⇥
Fixed 12 Mbps 2.23⇥ 1.63⇥ 1.28⇥ 2.04⇥ 1.34⇥ 1.05⇥
Fixed 36 Mbps 2.37⇥ 1.57⇥ 1.11⇥ 2.73⇥ 1.46⇥ 1.12⇥
Fixed 54 Mbps 2.94⇥ 1.71⇥ 1.12⇥ 2.87⇥ 1.58⇥ 1.07⇥

Table 5.7: Normalized throughput gains of FLUID over the best DCF and
CENTAUR across di�erent PHY rates.

all possible schedules o�ine. We also evaluate the performance of RaC-Pack
with the actual conflict graph as input. The aggregate UDP throughputs for
these approaches were 206.2 Mbps and 201.4 Mbps respectively, confirming the
accuracy of conflict graph and e�ciency of the packing approach.

— Di�erent PHY rates: Table 5.7 shows throughput gains of FLUID over the
best DCF configuration and CENTAUR for di�erent PHY rates. We observe
consistent gains across PHY rates (57% - 71% over best DCF, and 31% - 58%
over CENTAUR) on this topology as FLUID was able to successfully resolve the
conflicts, and exploit the exposed links available with variable channel widths
and partial spectral overlaps.

�.� ������� �� �����

In this chapter, we explored the opportunities and challenges in designing 802.11
based wireless LANs employing flexible channelization. We demonstrated
that while flexible channelization can improve system throughput, careful
construction of flexible channels requires taking into account the interference
parameters of the network that depend on the combination of frequencies and
channel widths, topology and tra�c demand. To this end, we designed and
implemented FLUID, a system which improves the throughput of enterprise
WLANs by employing joint flexible channelization and data scheduling.
Testbed results demonstrate the feasibility of our approach and throughput
improvements show that flexible channelization can be a useful parameter in
WLAN design.

180

� ������� ����

In this chapter various ongoing and prior research e�orts that are related to this
thesis. We first discuss research related to WiFi to WiFi interference detection
and quantification. In this portion, we begin by discussing mechanisms that
explicitly try to detect, avoid and recover from wireless packet collisions. Next,
we discuss proposals that try to model interference between di�erent WiFi links
using empirical measurements. Specifically, we focus on mechanisms that try to
handle interference in the wireless networks employing flexible channelization.
Next, we focus our attention to proposals that try to tackle non-WiFi to WiFi
interference. We discuss research prototypes and commercial solutions that
detect non-WiFi devices using WiFi hardware or other custom hardware. We
then discuss solutions that try to quantify non-WiFi interference and design
appropriate mitigation approaches. We close this chapter by discussing e�orts
in the area of localizing non-WiFi interfering devices.

�.� �������� �������� ������ ����������

The problem of handling wireless packet collisions is a fairly di�cult one, and
there have been a few e�orts prior to our COLLIE work that have tried to address
this problem. COLLIE was also successful in inspiring a number of subsequent
research e�orts that have tried to tackle this problem using more sophisticated
approaches. We discuss some of these e�orts below.

Avoiding collisions. There are have been a number of e�orts that focus
on avoiding collisions in wireless networks. For example, a number of MAC
protocols [94] try to avoid collisions by sending control frames or utilizing
out-of-band busy tones. One of the popular approaches is to use the RTS/CTS
mechanism that avoids some of the collisions. However, it is also well known
that such approaches have a high overhead, can result in throughput reduc-
tion [21, 22] and hence have been disabled by default in many deployments [31].
Further, compared to COLLIE, these schemes tend to be quite conservative as
they try to reserve a large space around communicating nodes [94] leading to

181

under utilization of the spectrum.

Detecting collisions. Of particular interest is the work that specifically
focussed on detecting collisions similar to COLLIE. SoftRate [157] utilizes soft
physical later hints (SoftPHY hints) to distinguish between losses due to
collisions and weak signal for the purposes for rate adaptation. Similarly,
AccuRate [144] uses information about constellation dispersions of preamble
and postamble to detect packet collisions. In [87], the authors propose a
“history” based approach to distinguish between losses due to collisions and
weak signal, and adapt rate based only on the errors due to weak signal. Prior
to COLLIE, Whitehouse et. al. [160] showed that if two frames arrive at a
receiver with certain timing characteristics (the second message arrives after
the preamble and start bytes of the first message) and with certain power levels
(the second message has significantly higher power level when compared to
the first) then it was possible for the receiver to conclude that collision had,
indeed, occurred. This mechanism was implemented on the Mica2 sensor mote
platform using a 433 MHz Chipcon CC1000 radio transceiver, and required
low-level access to timing and signal strength measurements that were available
on that platform. In comparison to these works, COLLIE is implemented for
o�-the-shelf 802.11 wireless transceivers that do not provide such low-level
access to communication parameters.

Recovering from collisions. Recently, there has been a growing interest in
the wireless networking community to integrate hints from the physical layer,
e.g., symbol level information, to solve certain MAC level problems. Some
of these e�orts have focussed on recovering from collisions. Recent examples of
works in this category include PPR [74] that proposes a scheme for partial packet
recovery using custom error checking, ZipTx [102] and Maranello [61] that make
use of known pilot bits to detect errors and recover partial packets. Some of the
research endeavors focus on using interference cancellation mechanisms such
as SIC [60] and ZigZag decoding [54] that tries to recover packets from repeated
collisions. Similarly, ANC [86] is another approach that utilizes knowledge
about one of the packets involved in the collision to recover packets. In yet

182

another work, OFDM symbol dispersions were utilized to present a theoretical
framework to distinguish between collisions and weak signal errors in [170].
COLLIE also uses information derived from the physical layer symbols for
diagnosing the cause of a packet loss. However, in COLLIE, we work the
within the constraints of the commodity WiFi hardware. Specifically, all these
approaches require rich information about the physical layer that are not
currently exposed by commodity WiFi hardware.

Aborting collisions. There has also been work that focuses on aborting
collisions. CSMA/CN [143] uses an in-band collision detection mechanisms
using self-signal suppression through interference cancellation and antenna
orientation. In [119], authors use a very similar concept but propose an out-of-
band control channel to transmit pulses to indicate active transmissions and
detect potential collisions.

Collision-aware rate adaptation. Some of the rate adaptation mechanisms
like RRAA [162] and CARA [21] have, also, tried to address the problem of
collision detection in an indirect manner. CARA tries to detect collisions by
using the RTS/CTS mechanism, but the proposed mechanism fails in the
presence of hidden terminals. CARA also su�ers from RTS oscillation [162]
which RRAA solves using an adaptive RTS filter. Unlike both RRAA and CARA
which try to estimate the collision probabilities by active probing (using an
RTS), COLLIE employs a direct approach by conducting an empirical post-
factum analysis based on receiver feedback. Finally, as mentioned before
AccuRate [144] and SoftRate [157] perform explicit collision detection to perform
cross layer bit rate adaptation to improve the throughput of wireless links.
COLLIE shows similar improvements by enhancing ARF and making it collision-
aware. However, it does so by using only information that is exposed by current
mainstream wireless cards.

Use of multiple receivers. COLLIE uses multiple receivers to improve the
accuracy of collision detection. Similar concepts were applied our subsequent
work on developing an real time interference estimator, PIE [149] that tries to
detect packet collisions across the entire network. Use of multiple receivers

183

has also been exploited previously in the context of improving throughput in
wireless networks, e.g., the Multi-Radio Diversity (MRD) System [109]. More
specifically, mechanisms proposed in MRD use multiple receivers to recover
from bit errors and improve loss resilience, whereas COLLIE uses multiple
receivers to determine the cause of the packet loss and uses this information
for adapting link transmission parameters. Jigsaw [38] also uses information
from multiple receivers to provide a global cross-layer viewpoint for enterprise
wireless network management.

�.� �������� ���� ������������ ��� �������� ��������������

We now discuss some of the related work in the area of modeling wireless
interference, and focus on some of the work related to flexible channelization.
FLUID was the first piece of work that tried to model the interference e�ects
when operating links on flexible channels. Prior to FLUID, most of the work
has focussed on modeling WiFi interference on fixed-width networks, and
mitigation mechanisms that use flexible channelization for managing wireless
interference. We discuss some of these e�orts in this section. Since FLUID
also employs a scheduling component to enhance the e�ect of interference
mitigation and explore additional transmission opportunities, we also consider
some of the scheduling based interference mitigation approaches in this section.
Below, we mention these related approaches for tackling WiFi interference and
explain how they di�er from FLUID.

Modeling WiFi to WiFi interference. There is a large body of work in
characterizing wireless interference, especially in the context of modeling
the capacity of wireless networks in presence of WiFi interference [52, 53,
57, 58, 85, 93, 95, 99]. Most of these approaches, while useful in providing
theoretical insights for the target setting under consideration, make some
simplifying assumptions (e.g., assuming a binary interference model) to make
the problem more tractable. An alternative body of work [18, 19, 39, 40, 85, 89,
104, 114, 117, 121, 133, 145, 158] has focused on using empirical measurements
to provide results that are more helpful in measuring the interference in realistic

184

settings. Among these works, several systems and models have tried to capture
interference between WiFi links using the concept of a “conflict graph”. Conflict
graph of a wireless network is a graph in which nodes represent the links in a
wireless network and edges corresponding to their interference relationships.
Research e�orts have focussed on deriving the conflict graph of a wireless
network either using empirical measurement based approaches, or using
modeling procedures, or in some cases a combination of both approaches
has been used. We now discuss these e�orts below.

Bandwidth test mechanism [117] uses a measurement intensive approach
to derive the conflict graph of the network. The basic idea is to let pairs of links
simultaneously transmit for a given duration and then measure the amount of
throughput reduction observed compared to the throughput observed in the
case where links ran in isolation. This work introduced the notion of continuous
interference model, wherein the amount of interference (in the range of 0 to 1)
depends on the amount of throughput reduction experienced by the links in
presence of interference. The work in [114] extends this notion by observing
that interference is additive in nature and computes the conflict graph of a
network in O(N2) measurements.

Through some custom firmware modifications, some systems have been
able to measure the conflict graph of the network more e�ciently. Smarta [19]
proposes using micro-experiments, each lasting less than a millisecond,
to measure the conflict information of a WLAN. CMAP [158] proposes a
mechanism to build the conflict graph of the network on the fly by observing
the packet reception probability and disabling carrier sensing opportunistically.

Alternatively, PIE [149] uses a passive mechanism to derive the conflict
graph of the network, using concepts similar to the multi-AP collision detection
introduced in COLLIE. Several other passive mechanisms [38, 39, 123, 136] have
been also been proposed in the literature. These mechanisms use network-wide
deployments [38, 39], or state-machine based learning approaches [123, 136]
to draw interesting inferences about the network performance and derive the
interference relationships between the links in the network.

Finally, several approaches have used explicit modeling mechanisms and
analytical techniques to reduce the overhead of conflict graph measurements.

185

Reis et al. [133] propose a model to capture the conflict graph of the network
using pair-wise signal strength models that reduces the overhead to O(N)

measurements. The key idea here is to use SINR based models to infer the
deferral probability and collision probability of nodes in the network. The work
in [84] and [121] extend this model to handle the case of multiple interferers
using analytical techniques.

We note that all these methodologies to generate conflict graphs are not
suited for use with flexible channelization as they incur significant overhead
(Chapter 5). FLUID builds upon some of the the above modeling approaches,
and uses signal strength based delivery models to predict interference between
links using variable channel widths while allowing arbitrary spectral overlaps.

Flexible channelization. Several channel assignment mechanisms have
proposed for both centralized [107] and distributed settings [23, 108]. These
mechanisms have been used to mitigate RF interference, and improve fairness
along with network throughputs. Existing work on e�cient channelization
mostly considers ‘fixed’ width channels [23, 106, 107, 108, 138], and has
shown usefulness of client feedback [107], tra�c-awareness [138], hopping
mechanisms [23, 108, 135] and partial overlaps [106] in this context. FLUID
builds upon a number of these ideas, and applies them to design a WLAN
employing flexible channelization. In particular, we extend the model presented
in [106] (evaluated mostly using simulations) to accommodate variable channel
widths and evaluate its accuracy using large scale measurements on commodity
hardware.

Recently researchers have explored mechanisms that assign fine grained
spectrum blocks on the basis of tra�c demands. However, most of these
mechanisms, such as KNOWS [169], DSAP [125], Jello [97], WhiteFi [24] and
DIMSUMnet [32] are designed for non-802.11 systems (mainly cognitive radios
operating over UHF whitespaces) and focus on deriving elegant algorithms for
spectrum allocation that are primarily evaluated using network simulations or
small-scale prototype implementation on software defined radios.

WhiteFI [24] proposes mechanisms to detect variable channel width
transmissions over UHF white spaces. SWIFT [125] is a distributed wideband

186

spectrum access system that can operate on large frequency bands, even in
presence of narrowband signals. Jello [97] proposes using frequency-agile
radios to support low latency media applications. Jello focuses on addressing
spectrum sensing and fragmentation issues that arise in a distributed setting.
Such fragmentation issues in FLUID are minimal, as the controller constructs
the flexible channels centrally, and recalculates this assignment every epoch,
based on the tra�c demand.

Further, FLUID in contrast to the above systems, is a solution that is stylized
to 802.11 standard in which the rules of carrier sensing define interference
in a certain way leading to hidden and exposed terminals. Moreover, FLUID
is evaluated using large scale experiments on a 50 node in-building wireless
testbed equipped with o� the shelf 802.11 hardware.

Another mechanism that facilitates fine grained spectrum allocation is
Orthogonal Frequency Division Multiple Access(OFDMA) [13]. Under OFDMA,
di�erent sub-carriers can be assigned to di�erent transmissions, providing
robustness against interference. However, as noted in [36], the gains from
OFDMA are complementary to that achieved using flexible widths and hence
it could be combined with FLUID to provide further improvements.

In the context of 802.11 systems, recent work [36] has shown how adapting
channel widths can be beneficial when considering a single, isolated link. Using
analysis and simulations, authors in [110] show how channel widths can be used
for load balancing. FLUID builds upon a number of these ideas, and extends
them significantly to build a practical system capable of leveraging variable
width gains under large scale realistic wireless settings. Another approach to
changing channel widths is by adding and removing OFDM sub-carriers, as in
S-OFDMA. We note that our techniques are useful in such networks as well. If
the wireless cards emit the same amount of energy irrespective of the width,
then our models hold as is. If the energy varies with the number of sub-carriers,
then FLUID’s signal interpolation model can be easily modified to scale the
transmitted signal with the channel width. Further, FLUID is complementary
to recently proposed fine grained frequency division mechanisms like OFDMA
[13] and FARA [124], and can be combined with such mechanisms to provide
further increase in throughput gains.

187

Scheduling in enterprise WLANs. Researchers have thoroughly studied
scheduling based channel access in wireless networks, and consequently a large
body of work has looked into mechanisms for e�cient packet scheduling [17,
59, 83, 103, 105, 113, 118, 127, 128, 148, 151, 155, 165]. Below we elucidate on
some of these proposals.

Some of the earliest works in the wireless scheduling focused on providing
fair proportion of bandwidth to di�erent flows in the network. A distributed fair
scheduling algorithm for WLANs was proposed in [155]. A similar scheduling
proposal for multi-hop wireless environments was proposed in [83]. TBR
(Time Based Regulation) [151] proposed using scheduling to solve rata anomaly
issues in 802.11 networks. Other mechanisms have focussed on using frame size
modifications [17, 165] to allow time-based fairness in presence of rate diversity.
More recently, scheduling has also been proposed in the context of vehicular
networking environments [59] to improve client performance. Scheduling has
also been proposed in wireless mesh networking scenarios [51, 79] and long
distance wireless links [113, 118, 127, 128].

We now discuss some of the more relevant scheduling mechanisms pro-
posed in the context of enterprise WLANs to improve overall network through-
put. CENTAUR [148] proposes using epoch-based scheduling mechanism for
enterprise WLANs. Specifically, it exploits such scheduling mechanisms to
resolve the exposed terminal conflict. FLUID also uses similar epoch-based
scheduling mechanisms to allocate flexible channels on a per-epoch basis.
More recently, centralized scheduling has also been used in the context of
directional antennas in DIRC [103] and MIM-aware transmission re-ordering
in Shu�e [105]. These proposals also use a two-phase TDMA approach similar
to FLUID to accommodate uplink tra�c.

�.� ���-���� ������ ���������

We now discuss some of the related work in the area of non-WiFi device
detection.

Signal classification mechanisms. There is a large body of literature on
signal classification that includes work on cyclostationary signal analysis [159],

188

blind signal detection [101, 115], and other spectrum sensing techniques [20].
Recently, some of the proposals [16, 43] have used neural network classifiers
with cyclostationary features to detect the type of modulation used in a received
signal. Finally, some of the recent work has also implemented cyclostationary
techniques on the USRP platform [24, 78, 116] and evaluated its e�ectiveness
for signal detection and rendezvous in cognitive networks. In contrast to such
methods, in our work, we only focus on signal detection methods that can be
implemented on top of the functionality exposed by commercial WiFi cards.

Commercial solutions. Present day solutions that detect RF devices include
entry-level products like AirMedic [2], Wi-Spy [12] that use extra hardware
to display spectrum occupancy, but cannot detect RF devices automatically.
More expensive solutions like Cisco Spectrum Expert/CleanAir [5], AirMagnet
Spectrum XT [2], and Bandspeed AirMaestro [3] use specialized hardware
(signal analyzer ICs) to perform high resolution spectral sampling and detect
RF devices. Airshark o�ers a similar performance, is more cost e�ective as it
operates using commodity WiFi cards, and requires only a software upgrade to
be readily integrated in existing WLAN deployments.

Recent research prototypes. Recent research work [66, 98] also leverages
specialized hardware to detect non-WiFi devices. Hong et. al [66] use a
modified channel sounder to sample a wideband (100 MHz), and present
novel cyclostationary signal analysis to accurately detect non-WiFi devices.
RFDump [98] uses GNURadio and employs timing/phase analysis along
with protocol specific demodulators to detect devices. Airshark builds such
functionality under the constraints of using commodity WiFi hardware.

Device-specific solutions. Using controlled measurements, prior work [26,
55, 100, 135, 146] has studied the impact of non-WiFi devices on WiFi links.
Many of them have focused on targeted interference scenarios, e.g., between
Bluetooth-WiFi [55] or ZigBee-WiFi [100, 146], and proposed mechanisms for
co-existence [37, 76]. Similar to [26, 135], we consider the general problem of
non-WiFi interference, but specifically, we focus on the problem of making
existing WiFi links better aware of non-WiFi RF devices, thereby paving the way

189

for corrective actions that can be implemented in today’s networks. Further,
our mechanism is complementary to the above solutions, and can be used in
conjunction to more e�ectively tackle non-WiFi interference.

�.� ���-���� ������������ ��������� ��� ������ ������������

We now present the related work in the areas of non-WiFi device interference
estimation and localization.

Non-WiFi interference estimation. As mentioned before, commercial
solutions such as Wispy [12], Cisco Spectrum Expert [5] and Bandspeed
AirMaestro [3] use custom hardware (signal analyzer ICs) to detect RF devices
operating in the medium. However, these solutions do not provide the
capability to estimate the interference caused by the non-WiFi devices to
the the WiFi links. Recent research work such as DOF [66], RFDump [98],
TIMO [139] can also detect the presence of non-WiFi device activity using
specialized hardware such as channel sounders and software-defined radios.
Such platforms enable TIMO and DOF to go beyond detection and employ
signal processing techniques to mitigate interference and develop mechanisms
to co-exist with non-WiFi devices. WiFiNet takes a step towards empowering
APs and clients with such functionality, by providing non-WiFi interference
estimation capability under the constraints of commodity WiFi hardware.
In [77], the authors use a single WiFi card to infer interference from Bluetooth
and microwave ovens by analyzing the timing of WiFi packet errors. However,
their technique does not generalize to detect inteference other non-WiFi devices
that don’t exhibit timing properties (e.g., ZigBee) and cannot distinguish
between devices of same type. In comparison, WiFiNet can also estimate the
interference from multiple, simultaneously operating devices and pin-point
their location in the physical space.

Device localization. There has been limited prior work on designing a
generic system to localize the various non-WiFi devices on the top of commodity
WiFi hardware. Existing literature has looked at localizing specific device
types (e.g., Bluetooth [140], Zigbee [69]) by using sensors of the same type.

190

Amongst commercial solutions, Wi-Spy device finder [12] uses a directional
antenna and requires a user to walk and manually search for the location of the
transmitter. Cisco CleanAir [5] finds the location of RF transmitter sources by
using specialized hardware in the access points. WiFiNet uses only commodity
WiFi cards to not only detect the location of non-WiFi devices, but also estimate
their interference impact.

191

� ����������� ��� ������ ����

In this thesis, we have shown how to develop systems and models that help
improve our understanding of interference in indoor wireless environments.
We have shown how a WiFi AP can di�erentiate between packet losses due to
weak signal and losses due to interference. We have developed systems that
further determine whether the losses due to wireless interference are stemming
from a non-WiFi interferer or a WiFi interferer. These systems not only detect
the wireless interferer, but also quantify the interference impact of the interferer,
and physically pin point the location of the interferer. We also explored an
alternative approach based on signal strength models that can predict the
wireless losses that can happen due to interference between links using flexible
channels. Further, all the solutions developed in the thesis have been built on
top of commodity WiFi hardware and so they can be natively incorporated into
today’s WiFi APs and clients to perform wireless loss diagnosis.

We now highlight the main contributions of this thesis in the next section,
and then present problems for future research endeavors.

�.� �������������

Below, we list the main contributions of this thesis:

Distinguishing between weak signal and collisions: Our work demon-
strated that the inability to distinguish between losses due to collisions and
weak signal in current 802.11 systems has led to conservative design of assuming
collision as the default cause for packet loss and that it translates to wasted
bandwidth, energy and significant performance degradation. To address these
issues, we developed the first collision inferencing engine, COLLIE, that works
on top of mainstream wireless cards. Specifically, we developed (i) algorithms
that expose statistical di�erences between collision and signal degradation
based losses through empirical analysis; (ii) a protocol that capitalizes on
the judgment from the algorithms by aptly adjusting the correct link-level
parameters for 802.11.

192

Our evaluation results demonstrated that COLLIE can provide up-to 95%
accuracy in detecting collisions while allowing a configurable false positive rate
of 2%. We showed that rate adaptation mechanisms such as ARF (auto-rate
fallback) when made collision-aware can lead to throughput improvements
between 20- 60%. Through an emulation of voice call (made using the Netgear
SPH101 Voice-over-WiFi phone), we also showed that our collision inferencing
mechanisms help reduce retransmission related costs by 40% for di�erent
mobility scenarios. This work was successful in highlighting a fundamental
drawback in 802.11’s design and has inspired significant follow-on work [42,
88, 90, 91, 96, 142, 143, 144, 157] in the wireless networking community.

In summary, this was the first piece of work that has shown how to design
collision inferencing mechanisms purely on top of commodity WiFi cards, and how
such inferences can feed into existing mechanisms such as rate adaptation to provide
significant throughput gains in wireless networks.

Detecting non-WiFi interferers using WiFi hardware: We carried out the
first measurement study to characterize the prevalence of non-WiFi RF devices
in typical environments such as homes, o�ces, and various public spaces.
Using data corresponding to more than 600 hours (spanning around 6 weeks
and across 21 locations) collected using signal analyzers we established the
prevalence of non-WiFi devices — these devices are popular across many
locations, and often appear with high signal strength. We then designed
Airshark, a software system that runs on top of commodity WiFi hardware and
can detect the presence of various non-WiFi devices. Airshark makes use of
the fine-grained spectrum information provided by emerging WiFi cards, and
utilizes machine learning algorithms to detect a device’s presence.

Our evaluation showed that Airshark can detect multiple non-WiFi devices
including fixed frequency devices (e.g., ZigBee, analog cordless phone),
frequency hoppers (e.g., Bluetooth, game controllers like Xbox), and broadband
interferers (e.g., microwave ovens). Airshark has an average detection accuracy
of 91-96%, over a wide range of signal strengths (-80 to -30 dBm) and has a
low false positive rate (0.39% on an average). Further, Airshark’s performance
was comparable to commercial signal analyzers that employ custom hardware.

193

In summary, this work has shown how to design a generic system to detect non-
WiFi RF devices using only commodity WiFi cards so that WiFi APs and clients to
natively perform such detection in today’s WLANs without any additional hardware.

Quantifying and localizing non-WiFi interference: We designed WiFiNet,
the first software system that can quantify and localize interference experienced
by WiFi links in presence of non-WiFi devices using only commodity WiFi
hardware. WiFiNet utilizes tight clock synchronization among WiFi APs
and employs signal clustering techniques operating on some non-WiFi device
specific attributes (when available) and signal strength observations gathered
by multiple WiFi APs to identify the unique transmission contributions from
di�erent, potentially identical, non-WiFi devices. By doing so, WiFiNet correctly
estimates the impact of each non-WiFi device, in presence of multiple other
interferers, even if they are of the same type. Our evaluation showed
that WiFiNet’s interference estimates are within ±10% of the ground truth.
WiFiNet also correctly tracks changes due to client mobility, dynamic tra�c
loads, and varying channel conditions. We also showed that WiFiNet can
identify the physical locations of non-WiFi devices accurately. Our evaluation
experiments showed that median localization error was 6 4 meters. Further,
WiFiNet can also be extended to quantify interference from WiFi devices.

In summary, WiFiNet is the first system that can detect, quantify and localize the
interference from non-WiFi interfering devices (as well as WiFi interferers) in real-
time and using commodity WiFi hardware alone. Such a system enables WLAN
administrators to use commodity WiFi APs to better understand and manage WiFi
and non-WiFi interference, especially in enterprise WLANs.

Modeling wireless interference in the context of flexible channelization:
We demonstrated that it is possible to model the wireless interference (WiFi
to WiFi interference) in presence of multiple WiFi links employing flexible
channelization — the choice of an appropriate channel width and center
frequency for each transmission. Our wireless interference models for flexible
channelization are based on empirical signal strength measurements and they
take into account that the interference properties of the network that depend

194

on the combination of frequencies and channel widths, topology and tra�c
demand. We designed and implemented FLUID, a system which improves the
throughput of enterprise WLANs by employing joint flexible channelization
based on our interference models. Through FLUID, we showed how enhancing
flexible channelization with data scheduling can maximize the number of
simultaneous transmissions and hence improve throughput.

We implemented FLUID in an enterprise-like setup using a 50 node testbed
with o�-the shelf wireless cards. Our evaluation of FLUID’s interference models
demonstrated a prediction accuracy of 87%. We showed that FLUID improves
the average throughput by 59% across all PHY rates, compared to existing
fixed-width approaches.

In summary, we showed how to model WiFi to WiFi interference in systems employ-
ing flexible channelization using empirical signal strength based models. Our results
demonstrated the feasibility of our modeling approach and throughput improvements
showed that flexible channelization interference models can be used as a crucial input
in WLAN design.

�.� ��� ��������� ��� ������� ������

We now present some of the key takeaways from this dissertation work and
discuss the lessons learnt along the way. We then describe the features lacking
in current WiFi cards, and as a feedback to WiFi chipset designers, we describe
some of the desirable features in future wireless cards that would help us build
systems that can better estimate interference in indoor wireless environments.

Key takeaways: We first discuss the key lessons learnt from our work on WiFi
to WiFi interference estimation (COLLIE and FLUID).

• Distinguishing between errors that happen due to collision and weak
signal is important as being agnostic to the type of errors leads to wasted
bandwidth, energy and significant performance degradation.

• Using limited information provided by today’s WiFi cards (e.g., RSSI
and failure bit error patterns), it is possible to design algorithms that can

195

achieve a collision detection accuracy of up to 95%. Further, making link
adaptation algorithms collision-aware improves throughput up to 30%.

• Changing channel widths on links using commodity WiFi hardware
results in changing the interference relationship between these links.
Further, it is possible to model such interference e�ects using RSSI
information provided by commodity WiFi cards. The median accuracy of
our models was 88%.

We now discuss the key lessons learnt from our work on non-WiFi to WiFi
interference estimation (Airshark and WiFiNet).

• Non-WiFi interference is prevalent in today’s indoor wireless environment,
and non-WiFi devices lead to significant throughput degradation (more
than 50% in many cases) of good quality WiFi links.

• While current WiFi cards only provide limited signal information (e.g.,
RSSI per sub-carrier), it is possible to detect a limited number (up to 6
in our experiments) of simultaneously operating non-WiFi devices using
such information. We note that this information about the received power
is common to any wireless technology — fundamentally, every wireless
technology employs radio emissions that inherently consist of electro-magnetic
energy (or power). Therefore, a solution that is developed solely on top of such
received power is generic, and is potentially applicable to all wireless technologies.
To our advantage, the very fact that di�erent radio technologies employ
diverse physical layer and MAC layer mechanisms (e.g., protocols, channel
access methods, modulation mechanisms) can be used to detect such
devices — di�erent radio technologies exhibit di�erent transmission power
patterns in the spectrum that can be used to uniquely identify them. The average
accuracy of our detection algorithms based on such power patterns was
91-96% even in the presence of multiple simultaneously active RF devices
operating at a wide range of signal strengths (-80 to -30 dBm).

• Combining such received power patterns from multiple WiFi cards, it
is possible to design systems that can also distinguish between multiple

196

devices of the same type (e.g., two cordless phones of the same model),
estimate the individual interference impact of each such non-WiFi device
and even physically pin point the location of each device. Experimental
results show that interference estimates were within ±10% of the ground
truth and the median localization error was 6 4 meters.

Feedback to wireless chipset designers: Based on our experience in building
interference estimation systems that make use of today’s WLAN hardware, we
now discuss some of the desirable features and capabilities in future wireless
cards. We expect these new features and capabilities to be useful in designing
software systems that run on top of WiFi cards and can further improve
the accuracy of interference estimation in indoor WLANs. Below, we first
present features that may be useful in improving the accuracy of WiFi to WiFi
interference estimation and argue for their utility:

• While information about RSSI per packet was helpful in identifying
whether a packet was received in error due to collision or weak signal, the
accuracy of our collision detection algorithms su�ered in some cases (e.g.,
due to capture e�ect). We believe this is partly because a metric like RSSI,
while useful, is not precise for the purposes of collision detection — RSSI
is calculated during the preamble stage of receiving an 802.11 frame and
thus cannot capture the spike in the received power due to interference.
Newer metrics such as Received Channel Power Indicator (RCPI) that
measure received RF power in a selected channel over the preamble and
the entire received frame would be more useful in this context. However,
RCPI is not exposed by current WiFi hardware. Of particular interest
is provision for fine-grained information about RSSI (averaged over a
few OFDM symbols) that can enable better detection of collisions — a
sudden spike in the instantaneous RSSI would then enable easier collision
detection using commodity WiFi cards [156].

• Metrics such as symbol error rate were also useful in our collision
detection algorithms. However, we could not obtain precise information
about the actual physical layer bits that were received in error. This

197

is mainly because of procedures such as scrambling, interleaving and
convolution coding are applied to the data bits to output the physical
layer bits. Providing a limited amount of additional information (e.g.,
scrambler seed used) can help determine the exact physical layer bits in
error as this mapping (scrambling, interleaving and convolution coding)
is deterministic and reversible. This would enable us to use novel metrics
based on actual physical layer error bits to improve the accuracy of
collision detection.

• Alternative to the above, exposing some additional information about the
physical layer decoding process in commodity WiFi cards — actual bits
received in error, measured constellation dispersions, and log likelihood
ratios (LLRs) of the decoders — is shown to be useful in increasing the
accuracy of collision detection [143, 144, 156].

Most of the inaccuracies in detecting non-WiFi devices using today’s WiFi
cards arose from reduced sampling quality attributable to a variety of reasons.
We now describe these reasons, and argue for inclusion of additional features
and capabilities that may be useful in improving the accuracy of non-WiFi to
WiFi interference estimation.

• Information about the received signal can be exposed at various levels of
accuracy. For example, software radios are capable of exposing baseband
I/Q samples (output by the ADC) that precisely represent the signal
information. Wireless cards can also expose such precise information
enabling us to develop custom software modules to not just detect a
particular non-WiFi device, but be able to decode its transmission. This
would not only allow for interference detection and avoidance, but also
help pave way for developing cross-technology co-existence mechanisms.
Such an approach, however, requires high processing capabilities at the
AP or the client using this WiFi card. At the other end of spectrum is
exposing only RSSI (averaged across an entire packet), or RSSI per sub-
carrier (averaged across a few OFDM symbols). While this information
does not allow us to decode the signal in its entirety, it allows us to detect

198

di�erent devices. On the plus side, this requires minimal processing
capabilities on the AP (or client). Further, sampling rate can also be
controlled (based on the number of symbols used for averaging) providing
us with di�erent amounts of precision. We recommend that wireless
cards should allow for a flexible sampling approach, one that enables
network administrators or wireless vendors to determine the precise
accuracy (raw I/Q samples vs. RSSI per sub-carrier for every OFDM
symbol vs. RSSI per sub-carrier averaged for a few symbols) of these
measurements based on the wireless environment, device’s processing
capabilities and energy constraints. Such a flexible approach would allow
for opportunistic mechanisms e.g., richer information can be requested
for dense wireless environments that host multiple non-WiFi devices,
whereas information at a coarser granularities can be used in relatively
quiet environments to conserve processing and energy costs.

• Current 802.11 a/b/g/n cards can only sample a limited amount of
spectrum bandwidth at any given instant. This leads to missing samples
from other parts of the spectrum. For example, today’s WiFi cards can
only capture samples from a spectrum bandwidth of either 20 MHz or
40 MHz, whereas the spectrum of interest could be much wider, as in
the case of 80 MHz wide 2.4 GHz band. We recommend that WiFi cards
should potentially be able to sample wider bands of spectrum — non-WiFi
interference solutions running on top of WiFi cards that can potentially
sample larger widths of spectrum will have improved accuracy and faster
convergence times. For this to happen, crystal oscillators in WiFi cards that
determine the clock speed1 should be able to run at a higher speed of 80
MHz, as opposed to today’s WiFi cards that support speeds up to 40 MHz.
We note that such faster clocks speeds are possible in future wireless
cards. As an example, emerging technologies like 802.11ac can have
communication channels as wide as 160 MHz, thus requiring support for

1This clock is eventually fed into the frequency synthesizers and PLLs that determine the
center frequency and bandwidth of the WiFi card respectively. For example, a PLL clock speed
of 40 MHz corresponds to a bandwidth of 40 MHz [36].

199

faster clock speeds. Running our non-WiFi detection algorithms on such
future wireless cards supporting 802.11ac should have better performance.

• While increasing the sampling bandwidth of WiFi cards is useful,
generally, one can expect that the amount of spectrum that has to be
monitored for non-WiFi device activity might be more than the sampling
bandwidth. In such cases, non-WiFi detection mechanisms such as
Airshark would require the WiFi card to switch to di�erent parts of the
spectrum and gather samples. We find that channel switching times for
current WiFi cards are rather large — in our experiments, the median time
to switch the channel was around 19.7 ms. Such high switching times
result in missing samples and hence lead to detection inaccuracies. We
recommend that the channel switching times in the current WiFi cards be
improved. Switching times of WiFi cards are typically determined by the
time taken for frequency synthesizers to settle [141]. Improvements in
technology leading to faster settling times for the frequency synthesizer
would reduce the number of missing samples and potentially improve
detection capabilities of our algorithms.

• Currently, in WiFiNet, only information from APs operating on the
same channel can be combined to detect non-WiFi devices (operating
in that channel) and estimate their interference impact on WiFi links
using the same channel. Concepts used in WiFiNet can be extended
to a scenario where multi-channel monitoring capability is needed. A
limiting factor in our current system is to be able to synchronize APs
running on di�erent channels — currently, WiFiNet uses common WiFi
packet receptions to determine the clock skews among di�erent APs
operating on the same channel, and then runs a time synchronization
algorithm. We recommend that chipset manufacturers provide primitives
that facilitate synchronization among clocks on WiFi cards that potentially
operate on multiple channels. Using today’s WiFi cards, multi-channel
synchronization can be enabled only by deploying multiple radios on each
AP and using a single local clock to timestamp the received packets [38].

200

• Lastly, it is desirable that a global repository of non-WiFi devices
and their transmission characteristics (or signatures as described in
Chapter 3) be maintained. Unlicensed spectrum is a host to a plethora
of non-WiFi devices that employ a variety of proprietary technologies.
Maintaining a single repository that maps the devices (e.g., using their
FCC IDs) to their signatures would enable re-use of these signatures
and obviate training stage of Airshark. However, we note that such
signatures would also have to take the wireless card under consideration
— appropriate normalization procedures in combination with WiFi card
specific thresholds (See Chapter 3) would have to be employed.

Summary and future outlook. In summary, current WiFi hardware
provides limited amount of information about the received signal such as
power characteristics. We find that such information is useful in a number
of cases including collision detection, non-WiFi device detection and non-
WiFi interference estimation. Moreover, these approaches are generic, and
we expect them to be applicable to future wireless technologies. This is because,
while information provided by current WiFi cards is limited, such information
is fundamental to all wireless technologies — every wireless technology,
irrespective of the physical and MAC layer mechanisms under consideration,
employs radio emissions that inherently consist of electro-magnetic energy (or
power). Thus a solution that is developed solely on top of such received power is
generic, and is potentially applicable in context of future wireless technologies
such as 802.11ac, and enables them to detect a variety of newer wireless devices
such as motion detectors, car alarms, lighting and HVAC controls that have
started to proliferate in the unlicensed band [139].

However, we note that the utility of this information (i.e., only received
power values) is also limited in some cases. For example, while it is possible to
detect a small number (6 6) non-WiFi devices that are active simultaneously,
detection approaches might not work well when increasing the number of
active devices or when detecting devices at low SNR. This is probably not
a concern in today’s WLANs where a maximum of 3 to 4 non-WiFi devices
happen to be active simultaneously (See Chapter 3). In future, however, as the

201

number of non-WiFi devices proliferate, we expect that some of the additional
desirable features mentioned above would be helpful in improving the accuracy
of detection mechanisms that work on top of commodity WiFi cards.

�.� ������ ����

We believe that this dissertation was successful in developing some of the impor-
tant building blocks to improve our understanding of wireless interference in
indoor wireless environments. We now describe some of the potential problems
for future research in this domain.

Leveraging client input for improved interference quantification: Inter-
ference quantification methods used in WiFiNet only use the input (observations
about WiFi and non-WiFi device transmissions) from WiFi APs. Enhancing
WiFiNet using the feedback from WiFi clients can improve the system in a
number of ways: (a) aggregating WiFi client transmission reports can help
WiFiNet also estimate uplink interference in the network. Such information would
be particularly useful for AP-client links running bi-directional, interactive
applications such as video conferencing or VoIP applications, (b) using clients
to report other WiFi transmissions can help improve WiFiNet’s coverage —
WiFi transmissions from other APs and clients not accounted before can help
improve overall accuracy for WiFi to WiFi interference quantification, (c) clients
with compatible WiFi hardware might also be able to run Airshark, thus
enabling them to detect additional non-WiFi devices in the client’s vicinity
thus improving WiFiNet’s coverage, accuracy of non-WiFi to WiFi interference
quantification as well as non-WiFi device localization accuracy.

It is important to note, however, that using client feedback also presents us
with some new challenges in the design of WiFiNet: (a) client devices (e.g., WiFi
enabled laptops, tablets and smartphones) are typically energy constrained
whereas running Airshark would require the WiFi card to be continuously on
thereby implying that client devices might not be able to use WiFi’s power-save
mode e�ectively. (b) Depending on the type of coverage required, the network
administrator might want WiFiNet to report interference information about

202

multiple WiFi channels. WiFiNet leverages an extra radio on the WiFi AP to
continuously switch channels and aggregate interference information. Such a
functionality, however, might not be desirable on the clients as it might disrupt
existing AP-client communication.

WiFiNet’s design would have to take these additional constraints into
account before scheduling tasks such as non-WiFi device detection, WiFi
transmission sni�ng etc. on client devices.

Enhancing interference quantification through active measurements: Air-
shark andWiFiNet are systems that use passive observations about device
transmissions to detect, quantify and localize wireless interference. An
alternative method is to estimate the impact of interference through limited
amount of active measurements. For example, detecting a non-WiFi device
activity, WiFiNet controller can schedule transmission probes for WiFi APs (and
clients) in the vicinity of the non-WiFi device to quantify the device’s impact —
scheduled probes would not only provide faster convergence of interference
estimates, but might also improve WiFiNet’s accuracy of interference estimation
due to reduced “overlapping transmissions” from WiFi devices. Such a design,
however, has to take additional parameters such as the overhead of probe tra�c
into account.

Designing better algorithms for interference estimation and localization:
While the accuracy of device detection, interference quantification and device
localization are quite reasonable, they can be further improved in a number of
ways. For example, Airshark’s device detection accuracy can be improved by
exploring additional features and more complex machine learning algorithms
that can better handle the cases where the transmissions of non-WiFi devices
always overlap (Chapter 3). There is also a scope for designing better metrics
using concepts from information theory such as J-score [82] that also take
the frequency of an interference event into account. Device localization
methods used in WiFiNet can also be improved by utilizing more complex
propagation models [65, 75, 120], richer information about the deployment [75]
and alternative algorithms [41] into account.

203

Extending interference quantification for other wireless environments:
Designing interference quantification mechanisms in the context of home
WLANs is an important research problem as it is well known that home
WLANs are typically prone to interference from a variety of WiFi and non-
WiFi devices [131]. While the systems developed in this thesis were designed
for, and evaluated on enterprise WLAN settings, some of the concepts used in
this systems are also applicable to home wireless LANs. For example, COLLIE’s
collision detection mechanisms that are based on analysis of bit-error patterns
and Airshark’s device detection capabilities are applicable in the context of
a single WiFi node (or a single WiFi link) systems typical of home WLANs.
Availability of multiple WiFi APs (and clients) can be used to further improve
the accuracy of these mechanisms. However, systems such as WiFiNet, and
FLUID, are based on the assumption that information is aggregated from
multiple vantage points (APs and clients). Such an assumption might not
be suitable for home WLANs. Further, the lack of a central control element (e.g.,
a WLAN controller) makes the problem a lot more challenging. It remains
to be seen whether mechanisms similar to WiFiNet can be designed with
the help of a single WiFi AP that uses non-WiFi device transmission reports
from Airshark and still be able to infer lost transmissions [123] to perform
transmission overlap analysis [132] and quantify the interference impact in
home WLAN environments.

Extending interference models to account for non-WiFi interference:
FLUID’s interference models only take WiFi to WiFi interference into account.
Similar interference models can be developed to take non-WiFi device inter-
ference into account. For example, information from Airshark can be used to
capture non-WiFi device’s signal strength information, and using information
about device’s power spectral density, models similar to those used in FLUID
that take the spectral overlap [106] into account can be developed. Such models
can provide information about non-WiFi device’s interference impact before
the event of a packet loss and help APs and clients take proactive approaches
to avoid interference.

204

� ������ �� ���� ������������

We briefly summarize the publications and the broader impact of this thesis
below.

• COLLIE: COLLIE was the first prototype running on top of mainstream
WiFi cards that can discern whether a packet loss was due to a collision
or due to weak signal. COLLIE was published in Infocom 2008 [130],
and it also won the ACM student research competition at MobiCom
2007. COLLIE was successful in highlighting a fundamental drawback in
802.11’s design and has inspired significant follow-on work in the wireless
networking community [42, 88, 90, 91, 96, 142, 143, 144, 157]1. Our own
enhancements to the multi-AP assisted collision inferencing mechanisms
introduced in COLLIE resulted in a system called PIE [149]. PIE can
quantify both transmitter-side (carrier sensing) and receiver-side (e.g.,
collision) interference for links across an entire WLAN in real-time, and
with no wireless measurement overhead. PIE was published in NSDI
2011.

• Airshark: Airshark was the first research prototype that uses only o�-
the-shelf WiFi cards to detect the presence of non-WiFi wireless devices
in real-time. Airshark was published in IMC 2011 [131] and has been
featured in many news outlets (e.g., Slashdot, NetworkWorld, CRA research
highlight). Recently, several wireless vendors such as Aruba [10] have also
started working on similar solutions that detect non-WiFi devices using
WiFi cards.

• WiFiNet: WiFiNet was the first system that detects, quantifies and local-
izes interference impact of various non-WiFi sources using commodity
WiFi hardware alone. WiFiNet was published in NSDI 2012.

• FLUID: FLUID showed that the interference relationships between WiFi
links depend on the channel width of operation. Combined with data

1As of May 2012, a total of 71 research papers have cited COLLIE according to Google scholar

205

scheduling, FLUID showed that significant throughput gains can be
achieved in a enterprise WLAN setting. FLUID was nominated for the
best paper award at MobiCom 2011 and was one of the three papers
fast-tracked to IEEE Transactions of Mobile Computing.

206

����������

[1] Agilent spectrum analyzers (signal analyzers).
http://www.agilent.com/.

[2] AirMagnet AirMedic and Spectrum XT. www.airmagnet.net/products.

[3] Bandspeed AirMaestro spectrum analysis solution.
http://www.bandspeed.com/.

[4] Cisco centralized wlan solution: Overview. http://www.cisco.at/
reseller/2005_08/Aironet_Controller.pdf.

[5] Cisco Spectrum Expert. http://www.cisco.com/en/US/products/ps9393/index.html.

[6] Intel pro/wireless network connection for mobile.
http://www.intel.com/network/connectivity/products.

[7] LIBSVM: A Library for Support Vector Machines.
http://www.csie.ntu.edu.tw/ cjlin/libsvm/.

[8] Madwifi wireless driver. http://madwifi-project.org.

[9] Meru controllers: Five times the capacity of other controllers.
Http://www.merunetworks.com/products/hardware/controllers/index.html.

[10] Mobile Edge Architecture of Aruba Wireless Networks.
Http://www.arubanetworks.com/technology/mobile-
edge/architecture.

[11] The WEKA data mining software: an update. ACM SIGKDD Explorations
Newsletter.

[12] Wi-Spy spectrum analyzer. www.metageek.net.

[13] Wimax forum whitepapers. Available at: http://www.wimaxforum.org.

[14] 2007. The Android Operating System. http://www.android.com/.

http://www.cisco.at/reseller/2005_08/Aironet_Controller.pdf
http://www.cisco.at/reseller/2005_08/Aironet_Controller.pdf
http://www.android.com/

207

[15] 2007. The Apple iOS Operating System. http://www.apple.com/
iphone/ios/.

[16] A. Fehske, J. Gaeddert, and J. Reed. 2005. A new approach to signal
classification using spectral correlation and neural networks.

[17] A. Munaretto, M. Fonseca, K.A. Agha, and G. Pujolle. 2004. Fair time
sharing protocol: A solution for IEEE 802.11b hot spots. In Lecture notes
in computer science.

[18] Aguayo, Daniel, John Bicket, Sanjit Biswas, Glenn Judd, and Robert
Morris. 2004. Link-level measurements from an 802.11b mesh network.
In Sigcomm.

[19] Ahmed, N., and S. Keshav. 2006. Smarta: A self-managing architecture
for thin access points. In Conext.

[20] Akyildiz, Ian F., Won-Yeol Lee, Mehmet C. Vuran, and Shantidev Mohanty.
2006. Next generation/dynamic spectrum access/cognitive radio wireless
networks: a survey. Comput. Netw.

[21] et al., J. Kim. 2006. Cara: Collision-aware rate adaptation for ieee 802.11
wlans. In Infocom, 139–150.

[22] Atheros. 2006. â£�802.11 wlan peformanceâ£û.

[23] Bahl, Paramvir, Ranveer Chandra, and John Dunagan. . Ssch: slotted
seeded channel hopping for capacity improvement in ieee 802.11 ad-hoc
wireless networks. In Mobicom ’04.

[24] Bahl, Paramvir, Ranveer Chandra, Thomas Moscibroda, Rohan Murty,
and Matt Welsh. . White space networking with wi-fi like connectivity.
In Sigcomm ’09.

[25] Bahl, Paramvir, and Venkata N. Padmanabhan. Radar: an in-building
rf-based user location and tracking system. In Infocom’00.

http://www.apple.com/iphone/ios/
http://www.apple.com/iphone/ios/

208

[26] Baid, Akash, Suhas Mathur, Ivan Seskar, Tripti Singh, Shweta Jain,
Dipankar Raychaudhuri, Sanjoy Paul, and Amitabha Das. Spectrum
MRI: Towards diagnosis of multi-radio interference in the unlicensed
band. In Ieee wcnc 2011.

[27] Bhargavan, V., A. Demers, S. Shenker, and L. Zhang. 1994. Macaw: A
media access protocol for wirelesss lans. In Proceedings of acm sigcomm.

[28] Bicket, J. 2005. Bit-rate selection in wireless networks. MIT Master’s
Thesis.

[29] B.Lin and J. Wu. 2003. Analysis of hyperbolic and circular positioning
algorithms using stationary signal-strength-di�erence measurements in
wireless communications. In Vtc.

[30] Brik, Vladimir, Eric Rozner, and Suman Banerjee. 2005. Dsap: a protocol
for coordinated spectrum access. In In ieee dyspan.

[31] Broadcom. 2005. Wireless lan adpater user guide.

[32] Buddhikot, Milind M., Paul Kolodzy, Scott Miller, Kevin Ryan, and Jason
Evans. 2005. Dimsumnet: New directions in wireless networking using
coordinated dynamic spectrum access. In Wowmom05 ’05, vol. 1.

[33] Bychkovsky, V., B. Hull, A. Miu, H. Balakrishnan, and S. Madden. 2006.
A measurement study of vehicular internet access using in situ wi-fi
networks. In Mobicom.

[34] Canalys. 2011. Smart phones and pads fuel wireless
LAN growth. http://www.canalys.com/newsroom/
smart-phones-and-pads-fuel-wireless-lan-growth.

[35] Castro, Rui, and Robert Nowak. 2009. Active sensing and learning.

[36] Chandra, Ranveer, Ratul Mahajan, Thomas Moscibroda, Ramya
Raghavendra, and Paramvir Bahl. A case for adapting channel width in
wireless networks. In Sigcomm ’08.

http://www.canalys.com/newsroom/smart-phones-and-pads-fuel-wireless-lan-growth
http://www.canalys.com/newsroom/smart-phones-and-pads-fuel-wireless-lan-growth

209

[37] Chek, Michael Cho-Hoi, and Yu-Kwong Kwok. Design and evaluation
of practical coexistence management schemes for Bluetooth and IEEE
802.11b systems. In Computer networks,’07.

[38] Cheng, Y., J. Bellardo, Péter Benkö, A. Snoeren, G. Voelker, and S. Savage.
2006. Jigsaw: solving the puzzle of enterprise 802.11 analysis. SIGCOMM.

[39] Cheng, Yu-Chung, Mikhail Afanasyev, Patrick Verkaik, Péter Benkö,
Jennifer Chiang, Alex C. Snoeren, Stefan Savage, and Geo�rey M. Voelker.
2007. Automating cross-layer diagnosis of enterprise wireless networks.
SIGCOMM Comput. Commun. Rev.

[40] Cheng, Yu-Chung, John Bellardo, Péter Benkö, Alex C. Snoeren,
Geo�rey M. Voelker, and Stefan Savage. 2006. Jigsaw: solving the puzzle
of enterprise 802.11 analysis. In Sigcomm.

[41] Chintalapudi, Krishna, Anand Padmanabha Iyer, and Venkata N.
Padmanabhan. 2010. Indoor localization without the pain. In Proceedings
of the sixteenth annual international conference on mobile computing and
networking, 173–184. MobiCom ’10, New York, NY, USA: ACM.

[42] Cho, Mingu, Hakyung Jung, Shinhaeng Oh, Ted "Taekyoung" Kwon, and
Yanghee Choi. 2011. Distinguishing collisions from low signal strength
in static 802.11n wireless lans. In Proceedings of the acm conext student
workshop, 15:1–15:2. CoNEXT ’11 Student, New York, NY, USA: ACM.

[43] Davy, Manuel, Arthur Gretton, Arnaud Doucet, Peter J. W. Rayner,
and Associate Member. 2002. Optimized support vector machines for
nonstationary signal classification. In Ieee signal processing letters, 9–12.

[44] Du, Pan, Warren A. Kibbe, and Simon M. Lin. Improved peak detection
in mass spectrum by incorporating continuous wavelet transform-based
pattern matching. In Bioinformatics’06.

[45] Eriksson, Jakob, Sharad Agarwal, Paramvir Bahl, and Jitendra Padhye.
2006. Feasibility study of mesh networks for all-wireless o�ces. In
Mobisys.

210

[46] F. Herzel, G. Fischer, and H. Gustat. An integrated cmos rf synthesizer
for 802.11a wireless lan. In Ieee jrnl. of solid-state circuits’03.

[47] Fernando, Xavier N., and Balakanthan Balendran. 2005. Adaptive
denoising and equalization of infrared wireless cdma system. EURASIP
J. Wirel. Commun. Netw. 2005(1):20–29.

[48] Future, Mobile. 2011. The 2011 Mobile Year in Review. http://
mobilefuture.org/page/-/images/2011-MYIR.pdf.

[49] G. Palshikar. Simple algorithms for peak detection in time-series, trddc
technical report’09. In Technical report, trddc.

[50] G. Stuber. Principles of Mobile Communication.2000.

[51] Gambiroza, Violeta, Bahareh Sadeghi, and Edward W. Knightly. 2004.
End-to-end performance and fairness in multihop wireless backhaul
networks. In Acm mobicom.

[52] Garetto, Michele, Theodoros Salonidis, and Edward W. Knightly. 2006.
Modeling per-flow throughput and capturing starvation in csma multi-
hop wireless networks. In Ieee infocom.

[53] Gastpar, Michael, and Martin Vetterli. 2002. On the capacity of wireless
networks: The relay case. In Proceedings of ieee infocom.

[54] Gollakota, Shyamnath, and Dina Katabi. 2008. Zigzag decoding:
combating hidden terminals in wireless networks. SIGCOMM Comput.
Commun. Rev. 38(4):159–170.

[55] Golmie, N., N. Chevrollier, and O. Rebala. Bluetooth and WLAN
coexistence: Challenges and solutions. IEEE Wireless Communications
Magazine’03.

[56] Gonzalez, Rafael C., and Richard E. Woods. Digital image processing,
3rd ed. 2006.

http://mobilefuture.org/page/-/images/2011-MYIR.pdf
http://mobilefuture.org/page/-/images/2011-MYIR.pdf

211

[57] Grossglauser, Matthias, and David Tse. 2001. Mobility increases the
capacity of ad-hoc wireless networks. In Proceedings of ieee infocom.

[58] Gupta, Piyush, and P. R. Kumar. 2000. The capacity of wireless networks.
IEEE Transactions on Information Theory.

[59] Hadaller, David, Srinivasan Keshav, Tim Brecht, and Shubham Agarwal.
2007. Vehicular opportunistic communication under the microscope. In
Acm mobisys.

[60] Halperin, Daniel, Thomas Anderson, and David Wetherall. 2008. Taking
the sting out of carrier sense: interference cancellation for wireless lans.
In Mobicom.

[61] Han, Bo, Aaron Schulman, Francesco Gringoli, Neil Spring, Bobby
Bhattacharjee, Lorenzo Nava, Lusheng Ji, Seungjoon Lee, and Robert R.
Miller. 2010. Maranello: Practical partial packet recovery for 802.11. In
Nsdi, 205–218. USENIX Association.

[62] Harmer, K., G. Howells, W. Sheng, M. Fairhurst, and F. Deravi. A peak-
trough detection algorithm based on momentum. In Cisp’08.

[63] Haupt, Jarvis, Rui Castro, and Robert Nowak. 2010. Distilled sensing:
Selective sampling for sparse signal recovery.

[64] Henderson, T., D. Kotz, and I. Abyzov. 2004. The changing usage of a
mature campus-wide wireless network. In Acm mobicom.

[65] Hills, Alex, Jon Schlegel, and Ben Jenkins. 2004. Estimating signal
strengths in the design of an indoor wireless network. In Ieee transactions
on wireless communications.

[66] Hong, Steven, and Sachin Katti. DOF: A local wireless information plane.
In Acm sigcomm 2011.

[67] IEEE. Wireless lan medium access control (MAC) and physical layer
(PHY) spec, IEEE 802.11 standard. IEEE Standard 802.11.

212

[68] Inc., Qualcomm Atheros. 2010. The Atheros AR92xx series datasheet.

[69] J. Blumenthal et. al. Weighted centroid localization in zigbee-based sensor
networks. IEEE ISISP’07.

[70] J. Han and M. Kamber. Data Mining: Concepts and Techniques.

[71] J. Padhye et al. Estimation of link interference in static multi-hop wireless
networks. In Imc’05.

[72] J. Sander et. al. Density-based clustering in spatial databases. Data Mining
Knowledge Discovery’98.

[73] Jain R. et. al. A quantitative measure of fairness and discrimination for
resource allocation in shared computer systems. In Tech. report’84.

[74] Jamieson, K., and H. Balakrishnan. 2007. Ppr: Partial packet recovery for
wireless networks. In Acm sigcomm.

[75] Ji, Yiming, Saâd Biaz, Santosh Pandey, and Prathima Agrawal. 2006.
Ariadne: a dynamic indoor signal map construction and localization
system. In Proceedings of the 4th international conference on mobile systems,
applications and services, 151–164. MobiSys ’06, New York, NY, USA: ACM.

[76] Jing, Xiangpeng, S.S. Anandaraman, M.A. Ergin, I. Seskar, and
D. Raychaudhuri. Distributed coordination schemes for multi-radio
co-existence in dense spectrum environments. In Ieee dyspan ’08.

[77] K. Lakshminarayanan et. al. Understanding 802.11 performance in
heterogeneous environments. HomeNets ’11.

[78] K. Sutton and L. E. Doyle. 2007. Cyclostationary signatures for rendezvous
in ofdm-based dynamic spectrum access networks.

[79] Kabbani, Abdul. 2006. Distributed low-complexity maximum throughput
scheduling in wireless backhaul networks.

[80] Kamerman, A., and L. Monteban. 1997. Wavelan ii: A high-performance
wireless lan for the unlicensed band.

213

[81] Kamerman, A. et al. Microwave oven interference on wireless lans
operating in the 2.4 ghz ism band. In Pimrc’97.

[82] Kandula, Srikanth, Ranveer Chandra, and Dina Katabi. 2008. What’s
going on?: learning communication rules in edge networks. In
Proceedings of the acm sigcomm 2008 conference on data communication, 87–
98. SIGCOMM ’08, New York, NY, USA: ACM.

[83] Kanodia, V., C. Li, A. Sabharwal, B. Sadeghi, and E. Knightly. 2001.
Distributed multi-hop scheduling and medium access with delay and
throughput constraints. In Acm mobicom.

[84] Kashyap, Anand, Samrat Ganguly, and Samir R. Das. A measurement-
based approach to modeling link capacity in 802.11-based wireless
networks. In Mobicom ’07.

[85] Kashyap, Anand, Samrat Ganguly, and Samir R. Das. 2007. A
measurement-based approach to modeling link capacity in 802.11-based
wireless networks. In Acm mobicom.

[86] Katti, Sachin, Shyamnath Gollakota, and Dina Katabi. 2007. Embracing
wireless interference: Analog network coding. In In: Proc. of the acm
sigcomm, 397–408. MIT.

[87] Khan, Malik Ahmad Yar, and Darryl Veitch. 2009. Isolating physical per
for smart rate selection in 802.11. In Infocom, 1080–1088. IEEE.

[88] Khan, Malik Ahmad Yar, and Darryl Veitch. 2011. Smartrate: A new
dynamic rate adaptation algorithm for 802.11 wireless networks. In
Wowmom, 1–10. IEEE.

[89] Kim, Kyu-Han, and Kang G. Shin. 2006. On accurate measurement of
link quality in multi-hop wireless mesh networks. In Acm mobicom.

[90] Kriara, Lito, Soï¬'a Pediaditaki, and Mahesh K. Marina. 2012. On the
importance of loss di�erentiation for link adaptation in wireless lans.

214

[91] Kulkarni, Parag, Benjamin Motz, Tim Lewis, and Sadia Quadri. 2011.
Inferring loss causes to improve link rate adaptation in wireless
networks. In Proceedings of the 2011 ieee international conference on advanced
information networking and applications, 659–666. AINA ’11, Washington,
DC, USA: IEEE Computer Society.

[92] Kullback, S. Information theory and statistics, 1959.

[93] Kumar, Anurag, Eitan Altman, Daniele Miorandi, and Munish Goyal.
2007. New insights from a fixed-point analysis of single cell ieee 802.11
wlans. IEEE/ACM Transactions on Networking.

[94] Kumar, Sunil, Vineet S. Raghavan, and Jing Deng. 2006. Medium access
control protocols for ad hoc wireless networks: A survey. Ad Hoc Netw.
4(3):326–358.

[95] Kumar, V. S. Anil, Madhav V. Marathe, Srinivasan Parthasarathy, and
Aravind Srinivasan. 2005. Algorithmic aspects of capacity in wireless
networks. In Sigmetrics.

[96] Kyriakou, Georgios, Donatos Stavropoulos, Iordanis Koutsopoulos,
Thanasis Korakis, and Leandros Tassiulas. 2012. A framework and
experimental study for discrimination of collision and channel errors in
wireless lans. In Testbeds and research infrastructure. development of networks
and communities, vol. 90, 271–285. Springer Berlin Heidelberg.

[97] L. Yang, W. Hou, L.Cao, B. Y. Zhao and H. Zheng. Supporting demanding
wireless applications with frequency-agile radios. In Ndsi’08.

[98] Lakshminarayanan, Kaushik, Samir Sapra, Srinivasan Seshan, and Peter
Steenkiste. RFDump: an architecture for monitoring the wireless ether.
In Conext’09.

[99] Li, Jinyang, Charles Blake, Douglas S.J. De Couto, Hu Imm Lee, and
Robert Morris. 2001. Capacity of ad hoc wireless networks. In Acm
mobicom.

215

[100] Liang, Chieh-Jan Mike, Nissanka Bodhi Priyantha, Jie Liu, and Andreas
Terzis. Surviving Wi-Fi interference in low power zigbee networks. In
Acm sensys’10.

[101] Like, Eric, Vasu D. Chakravarthy, Paul Ratazzi, and Zhiqiang Wu. 2009.
Signal classification in fading channels using cyclic spectral analysis.
EURASIP J. Wirel. Commun. Netw. 2009:29:1–29:14.

[102] Lin, Kate Ching-Ju, Nate Kushman, and Dina Katabi. 2008. Ziptx:
Harnessing partial packets in 802.11 networks. In Proceedings of the 14th
acm international conference on mobile computing and networking, 351–362.
MobiCom ’08, New York, NY, USA: ACM.

[103] Liu, Xi, Anmol Sheth, Michael Kaminsky, Konstantina Papagiannaki,
Srinivasan Seshan, and Peter Steenkiste. Dirc: increasing indoor wireless
capacity using directional antennas. In Sigcomm ’09.

[104] Mahajan, Ratul, Maya Rodrig, David Wetherall, and John Zahorjan.
Analyzing the mac-level behavior of wireless networks in the wild.
SIGCOMM ’06.

[105] Manweiler, Justin, Naveen Santhapuri, Souvik Sen, Romit Roy Choud-
hury, Srihari Nelakuditi, and Kamesh Munagala. Order matters:
Transmission reordering in wireless networks. In Mobicom’08.

[106] Mishra, A., E. Rozner, S. Banerjee, and W. Arbaugh. 2005. Exploiting
partially overlapping channels in wireless networks: Turning a peril into
an advantage. In Acm/usenix imc.

[107] Mishra, Arunesh, Vladimir Brik, Suman Banerjee, Aravind Srinivasan,
and William A. Arbaugh. 2006. A client-driven approach for channel
management in wireless lans. In Infocom.

[108] Mishra, Arunesh, Vivek Shrivastava, Dheeraj Agrawal, Suman Banerjee,
and Samrat Ganguly. Distributed channel management in uncoordinated
wireless environments. In Mobicom ’06.

216

[109] Miu, Allen, Hari Balakrishnan, and Can Emre Koksal. 2005. Improving
loss resilience with multi-radio diversity in wireless networks. In Acm
mobicom.

[110] Moscibroda, Thomas, Ranveer Chandra, Yunnan Wu, Sudipta Sengupta,
Paramvir Bahl, and Yuan Yuan. Load-aware spectrum distribution in
wireless lans. In Icnp ’08.

[111] MuniWireless. 2011. Smartphones and tablets to
drive 350 percent increase in Wi-Fi hotspots by
2015. http://www.muniwireless.com/2011/11/10/
smartphones-tablets-drive-350-percent-increase-wifi-hotspots/.

[112] Murty, Rohan, Jitendra Padhye, Ranveer Chandra, Alec Wolman, and
Brian Zill. 2008. Designing high performance enterprise wi-fi networks.
In Proceedings of the 5th usenix symposium on networked systems design and
implementation, 73–88. NSDI’08, Berkeley, CA, USA: USENIX Association.

[113] Nedevschi, Sergiu, Rabin K. Patra, Sonesh Surana, Sylvia Ratnasamy,
Lakshminarayanan Subramanian, and Eric Brewer. 2008. An adaptive,
high performance mac for long-distance multihop wireless networks. In
Acm mobicom.

[114] Niculescu, Dragos. 2007. Interference map for 802.11 networks. In Imc.

[115] O. Zakaria. Blind signal detection and identification over the 2.4 GHz
ISM band for cognitive radio. In Ms thesis usf’09.

[116] O’Shea, T. J., T. C. Clancy, and H. J. Ebeid. 2007. Practical signal detection
and classification in GNU Radio. In Sdr forum technical conference.

[117] Padhye, J., S. Agarwal, V. Padmanabhan, L. Qiu, A. Rao, and B. Zill. 2005.
Estimation of link interference in static multi-hop wireless networks. In
Imc.

[118] Patra, Rabin, Sergiu Nedevschi, Sonesh Surana, Anmol Sheth, Lakshmi-
narayanan Subramanian, and Eric Brewer. 2007. Wildnet: Design and

http://www.muniwireless.com/2011/11/10/smartphones-tablets-drive-350-percent-increase-wifi-hotspots/
http://www.muniwireless.com/2011/11/10/smartphones-tablets-drive-350-percent-increase-wifi-hotspots/

217

implementation of high performance wifi based long distance networks.
In Nsdi.

[119] Peng, Jun, Liang Cheng, and Biplab Sikdar. 2007. A wireless mac protocol
with collision detection. IEEE Transactions on Mobile Computing 6(12):
1357–1369.

[120] Phaiboon, Supachai. 2002. An empirically based path loss model for
indoor wireless channels in laboratory building. In Proceedings of ieee
tencon.

[121] Qiu, Lili, Yin Zhang, Feng Wang, Mi Kyung Han, and Ratul Mahajan.
2007. A general model of wireless interference. In Acm mobicom.

[122] Quinlan, J. Ross. 1993. C4.5: programs for machine learning. Morgan
Kaufmann Publishers Inc.

[123] R. Mahajan et. al. Analyzing the mac-level behavior of wireless networks
in the wild. SIGCOMM ’06.

[124] Rahul, Hariharan, Farinaz Edalat, Dina Katabi, and Charles G. Sodini. .
Frequency-aware rate adaptation and mac protocols. In Mobicom ’09.

[125] Rahul, Hariharan, Nate Kushman, Dina Katabi, Charles Sodini, and
Farinaz Edalat. . Learning to share: narrowband-friendly wideband
networks, SIGCOMM’08.

[126] Ramachandran, Kishore, Ravi Kokku, Honghai Zhang, and Marco
Gruteser. Symphony: synchronous two-phase rate and power control in
802.11 wlans. In Mobisys ’08.

[127] Raman, Bhaskaran, and Kameswari Chebrolu. 2005. Design and
evaluation of a new mac protocol for long-distance 802.11 mesh networks.
In Acm mobicom.

[128] Rao, Ananth, and Ion Stoica. 2005. An overlay mac layer for 802.11
networks. In Acm mobisys.

218

[129] Rappaport, T. 1996. Wireless communications: Principle and practice.
Prentice Hall.

[130] Rayanchu, Shravan, Arunesh Mishra, Dheeraj Agrawal, Sharad Saha,
and Suman Banerjee. 2008. Diagnosing wireless packet losses in 802.11:
Separating collision from weak signal. In Infocom, 735–743. IEEE.

[131] Rayanchu, Shravan, Ashish Patro, and Suman Banerjee. 2011. Airshark:
Detecting non-WiFi devices using commodity WiFi hardware. In ACM
IMC.

[132] Rayanchu, Shravan, Ashish Patro, and Suman Banerjee. 2012. Catching
whales and minnows using WiFiNet: Deconstructing non-WiFi
interference using commWiFi hardware. In ACM USENIX NDSI.

[133] Reis, C., R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan. 2006.
Measurement-based models of delivery and interference in static wireless
networks. In Acm sigcomm.

[134] Research, Infonetics. 2012. It’s o�cial: Wireless LAN is the hottest market
in enterprise networking. http://www.infonetics.com/pr/2012/
4Q11-Wireless-LAN-and-Ethernet-Switch-Market-Highlights.
asp.

[135] R.Gummadi, D.Wetherall, B.Greenstein and S.Seshan. Understanding
and mitigating the impact of rf interference on 802.11 networks. In
Sigcomm ’07.

[136] Rodrig, Maya, Charles Reis, Ratul Mahajan, David Wetherall, and John
Zahorjan. 2005. Measurement-based characterization of 802.11 in a
hotspot setting. In Acm sigcomm e-wind.

[137] Rodrig, Maya, Charles Reis, Ratul Mahajan, David Wetherall, John
Zahorjan, and Ed Lazowska. CRAWDAD data set uw/sigcomm2004.

[138] Rozner, Eric, Yogita Mehta, Aditya Akella, and Lili Qiu. 2007. Tra�c-
aware channel assignment in enterprise wireless lans. In Icnp.

http://www.infonetics.com/pr/2012/4Q11-Wireless-LAN-and-Ethernet-Switch-Market-Highlights.asp
http://www.infonetics.com/pr/2012/4Q11-Wireless-LAN-and-Ethernet-Switch-Market-Highlights.asp
http://www.infonetics.com/pr/2012/4Q11-Wireless-LAN-and-Ethernet-Switch-Market-Highlights.asp

219

[139] S. Gollakota et al. Clearing the RF Smog: Making 802.11 Robust to Cross-
Technology Interference. In Acm sigcomm 2011.

[140] S. Thongthammachart and H. Olesen. Bluetooth enables in-door mobile
location services. VTC’03.

[141] Sankaran, Sundar G., Masoud Zargari, Lalitkumar Y. Nathawad, Hirad
Samavati, Srenik S. Mehta, Alireza Kheirkhahi, Phoebe Chen, Ke Gong,
Babak Vakili-Amini, Justin A. Hwang, Shuo-Wei Mike Chen, Manolis
Terrovitis, Brian J. Kaczynski, Sotirios Limotyrakis, Michael P. Mack,
Haitao Gan, Meelan Lee, Richard T. Chang, Hakan Dogan, Shahram
Abdollahi-Alibeik, Burcin Baytekin, Keith Onodera, Suni Mendis,
Andrew Chang, Yashar Rajavi, Steve Hung-Min Jen, David K. Su, and
Bruce A. Wooley. 2009. Design and implementation of a cmos 802.11n
soc. Comm. Mag.

[142] Sen, Souvik, Romit Roy Choudhury, Naveen Santhapuri, and Srihari
Nelakuditi. 2009. Moving away from collision avoidance: Towards
collision detection in wireless networks. In Hotnets’09.

[143] Sen, Souvik, Romit Roy Choudhury, and Srihari Nelakuditi. 2010.
Csma/cn: carrier sense multiple access with collision notification.
In Proceedings of the sixteenth annual international conference on mobile
computing and networking, 25–36. MobiCom ’10, New York, NY, USA:
ACM.

[144] Sen, Souvik, Naveen Santhapuri, Romit Roy Choudhury, and Srihari
Nelakuditi. 2010. Accurate: constellation based rate estimation in wireless
networks. In Proceedings of the 7th usenix conference on networked systems
design and implementation, 12–12. NSDI’10, Berkeley, CA, USA: USENIX
Association.

[145] Sheth, Anmol, Christian Doerr, Dirk Grunwald, Richard Han, and
Douglas C. Sicker. 2006. Mojo: a distributed physical layer anomaly
detection system for 802.11 wlans. In Mobisys.

220

[146] Shin, Soo Young, Jeong Seok Kang, and Hong Seong Park. Packet error
rate analysis of zigbee under wlan and bluetooth interferences. In Ieee
trans. wireless comm.’06.

[147] Shrivastava, S., S. Rayanchu, J. Yoon, and S. Banerjee. 2008. 802.11n under
the microscope. In Imc.

[148] Shrivastava, Vivek, Nabeel Ahmed, Shravan Rayanchu, Suman Banerjee,
Srinivasan Keshav, Konstantina Papagiannaki, and Arunesh Mishra.
CENTAUR: realizing the full potential of centralized wlans through a
hybrid data path. In Mobicom’09.

[149] Shrivastava, Vivek, Shravan Rayanchu, Suman Banerjee, and Konstantina
Papagiannaki. 2011. Pie in the sky: online passive interference estimation
for enterprise wlans. In Proceedings of the 8th usenix conference on networked
systems design and implementation, 25–25. NSDI’11, Berkeley, CA, USA:
USENIX Association.

[150] Taher, M. et al. Characterization of an unintentional wi-fi interference
device-the residential microwave oven. In Milcom’06.

[151] Tan, Godfrey, and John Guttag. 2004. Time-based fairness improves
performance in multi-ra te wlans. In Proc. of usenix.

[152] Tan, Kun, Ji Fang, Yuanyang Zhang, Shouyuan Chen, Lixin Shi, Jiansong
Zhang, and Yongguang Zhang. Fine-grained channel access in wireless
lan, SIGCOMM’10.

[153] Tech, Mashable. 2011. 5 Reasons Youâ£™re Consuming More Mobile
Content. http://mashable.com/2011/04/28/mobile-content/.

[154] TechCrunch. 2011. 61 Percent of U.S. Households
Now Have WiFi. http://techcrunch.com/2012/04/05/
study-61-of-u-s-households-now-have-wifi/.

[155] Vaidya, N., P. Bahl, and S. Gupta. 2000. Distributed fair scheduling in a
wireless lan. In Acm mobicom.

http://mashable.com/2011/04/28/mobile-content/
http://techcrunch.com/2012/04/05/study-61-of-u-s-households-now-have-wifi/
http://techcrunch.com/2012/04/05/study-61-of-u-s-households-now-have-wifi/

221

[156] Vutukuru, M., H. Balakrishnan, and K. Jamieson. 2009. Cross-layer
wireless bit rate adaptation. In Acm sigcomm.

[157] Vutukuru, Mythili, Hari Balakrishnan, and Kyle Jamieson. 2009. Cross-
Layer Wireless Bit Rate Adaptation. In Acm sigcomm. Barcelona, Spain.

[158] Vutukuru, Mythili, Kyle Jamieson, and Hari Balakrishnan. Harnessing
Exposed Terminals in Wireless Networks. In Nsdi’08.

[159] W. Gardner. Exploitation of spectral redundancy in cyclostationary
signals. In Ieee signal processing magazine’91.

[160] Whitehouse, K., A. Woo, F. Jiang, J. Polastre, and D Culler. 2005. Exploiting
the capture e�ect for collision detection and recovery. In Emnets-11.

[161] Wireless, Daily. 2011. Top Wireless Trends of 2011. http://www.
dailywireless.org/2011/12/29/top-wireless-trends-of-2011/.

[162] Wong, S., S. Lu, H. Yang, and V. Bhargavan. 2006. Robust rate adaptation
for 802.11 wireless networks. In Acm mobicom.

[163] Wong, S., H. Yang, S. Lu, and V. Bhargavan. 2006. Robust rate adaptation
for 802.11 wireless networks. In Acm mobicom.

[164] Yang, Lei, Lili Cao, Heather Zheng, and Elizabeth Belding. Tra�c-aware
dynamic spectrum access. In Wicon ’08.

[165] Yoo S-H, Choi J-H, Hwang J-H, and Yoo C. 2005. Eliminating the
performance anomaly of 802.11b. In In lecture notes in computer science.

[166] Youssef, Moustafa, and Ashok Agrawala. The horus wlan location
determination system. In Mobisys’05.

[167] Yu, Guoshen, StÃ©phane Mallat, and Emmanuel Bacry. 2008. Audio
denoising by time-frequency block thresholding. IEEE Transactions on
Signal Processing 56:1830–1839.

http://www.dailywireless.org/2011/12/29/top-wireless-trends-of-2011/
http://www.dailywireless.org/2011/12/29/top-wireless-trends-of-2011/

222

[168] Yuan, Yuan, Paramvir Bahl, Ranveer Chandra, Thomas Moscibroda, and
Yunnan Wu. Allocating dynamic time-spectrum blocks in cognitive radio
networks. In Mobihoc ’07.

[169] Yuan, Y. et al. Knows : Kognitiv networking over white spaces. IEEE
DySPAN’07.

[170] Zeng, Zheng, and P. R. Kumar. 2008. Towards optimally exploiting
physical layer information in ofdm wireless networks. In Proceedings of the
4th annual international conference on wireless internet, 33:1–33:9. WICON
’08, ICST, Brussels, Belgium, Belgium: ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering).

	Contents
	List of Tables
	List of Figures
	Introduction
	Focus of this thesis
	Modeling wireless packet losses due to collisions
	Detecting non-WiFi devices using WiFi hardware
	Quantifying non-WiFi interference using WiFi hardware
	Modeling interference between links using flexible channels
	Contributions
	Outline

	Identifying Losses due to Wireless Collisions
	Motivation
	An Overview of COLLIE
	Feedback-based Collision Inference
	Using COLLIE for Link Adaptation
	Experimental Results
	Summary of COLLIE

	Detecting Non-WiFi RF Devices using WiFi Hardware
	Motivation
	Characterizing Prevalence of Non-WiFi RF Devices
	Airshark: Device Detection
	Experimental Results
	Issues and Discussion
	Summary of Airshark

	Deconstructing Non-WiFi Interference using WiFi Hardware
	Motivation
	WiFiNet
	Experimental Results
	Issues and Discussion
	Summary of WiFiNet

	Modeling Interference due to Flexible Channels
	Motivation
	Properties of Flexible Channels
	FLUID: Overview
	Modeling Conflicts in FLUID
	Transmission Packing
	Implementation Aspects
	Evaluation
	Summary of FLUID

	Related Work
	Handling wireless packet collisions
	Modeling WiFi interference and flexible channelization
	Non-WiFi Device Detection
	Non-WiFi Interference Detection and Device Localization

	Conclusions and Future Work
	Contributions
	Key takeaways and lessons learnt
	Future work

	Impact of this dissertation
	References

