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Abstract—It is well known that a packet loss in 802.11 can acknowledgement (ack) from the receiver; the lack of which
happen either due to collision or an insufficiently strong synal. ypon timeout gives an indirect indication of a collision.
However, discerning the exact cause of a packet loss, once it A packet loss could also be due to weak signal — that is

occurs, is known to be quite difficult. In this paper we take a . . . e .
fresh look at this problem of wireless packet loss diagnositor ~ the signal at the receiver was insufficient given the datia-ra

802.11-based communication and propose a promising techpie  that the packet was modulated at. This can happen frequently
called COLLIE. COLLIE performs loss diagnosis by using as aggressive data-rate adaptation algorithms [2] attémpt
newly designed metrics that examine error patterns within a operate a wireless link at the highest rate possible in dxler

physical-layer symbol in order to expose statistical differences o . ..
between collision and weak signal based losses. We implenten maximize throughput and overall system capacity. Attiryt

COLLIE through custom driver-level modifications in Linuxand ~ the correct cause for a packet loss is important for wireless
evaluate its performance experimentally. Our results demostrate  media, as they trigger different choice for link parametard
that it has an accuracy ranging between 60-95% while allowig thus affect the overall performance of the wireless link. We

a false positive rate of upto 2%. We also demonstrate the use cg]| this problem of determining the cause of a packet loss to
of COLLIE in subsequent link adaptations in both static and collision versus weak signal, asss diagnosis

mobile wireless usage scenarios through measurements orgrear . . . ) .
laptops and the Netgear SPH101 Voice-over-WiFi phone. Intsse ~ LOSS diagnosis in 802.11 can be challenging since by design,
experiments, COLLIE led to throughput improvements of 20- the receiver provides binary (i.e. whether the packet was

60% and reduced retransmission related costs by 40% dependg  correctly received or was lost) feedback on the reception

upon the channel conditions. properties of a packet. Suppose, for the purposes of our
study, we had a receiver that could provide detailed diatpos
|. INTRODUCTION information on the reception properties of a packet. Then,

8ould we do better than the current mechanisms used in

Carrier-Sense Multiple Access or CSMA which evolve o _ : .
from the slotted-Aloha protocol in the early 1970s, has bezo ,802'_11' More systemanc_ally, We pose the following quespo
this paper :By analyzing the bit-level error patterns in

the de-facto mechanism for implementing distributed aced : :

to shared communication medium. It is commonly used l{ycelved data and other physical layer metrics (e.g. at the
the Ethernet class of link technologies for both wired (8)2. ymboI-IeveI)_ can we determ|_ne ﬂj)e cause of a packet Iqss
and wireless (802.11) media. An important facet to the |mopl%etween coII|_5|on and weak signal? Further, can we dor)thls
implementation of the CSMA method is being able to deteP@S€d On a single (or a few) packet loss(es) in real-time"

concurrent access of the media by two or more entities thaiplications of loss diagnosis:Determining the cause of a
usually leads to a collision. packet loss is significant as this dictates the correspgndin
In the case of a wired Ethernet, transmitting stations cofetion to be taken at the link layer — for collisions, the
tinue to listen for incoming signals (collisions) and emit g&ansmitting station would perform an exponential backoff
jamming signal to notify all other stations if a collision iswhile for weak signal the rate-adaptation algorithm wouéd b
detected[1]. This provides accurate and timely feedbatkeo invoked. Figure 1 illustrates what must ligeally done in
CSMA protocol which triggers a backoff in order to resolveéhe event of a packet loss. Depending on the specific reason
the concurrent access. For wireless media, such detectiorior packet loss, different actions should be taken at thie lin
hard to realize due to the fact that the strongest signal (ager, each corresponding to adjusting different transiois
the closest source), always dominates the receiver grcuiparameters of the wireless interface as follows:
Thus, a receiver close to the transmitter (or possibly catied
with it) would not be able to receive any other concurrent
transmissions thereby being unable to detect collisiorssaA
result 802.11 implements CSMA with Collision Avoidance :
the receipt of a data packet is confirmed through an explicit_

« Collision: In case of a collision related loss, the Con-

gestion Window (CW) parameter should be double as

determined by the Binary-Exponential Backoff (BEB)

algorithm used in 802.11.

Weak signal: For packet loss due to a weak signal, adap-
. . , tation of data-rate and transmit power parameters must
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Backoff Tune data-rate, power : : i HAS H i
[Tune G e ] [ Maybe handoft 2 j Action RRTS) to estimate coII|S|_on probabll_me.s. Being mdw,ab‘es_e
approaches require multiple transmissions and obsensat®

Cause discern the channel conditions, thereby taking a long time t
converge to the correct transmission parameters. In cgintra
Event we employ adirect approach; we immediately determine

, _ the cause of a packet loss without requiring any additional
Fig. 1. What link parameters to adapt and how depends on theecr a L . . .
packet loss. transmissions from the wireless client, but by conducting

an empirical post-factumanalysis of the explicit feedback

N ) obtained from the receiver.
Unfortunately the inability to determine the cause of a

packet loss in real-time, has forced a rather conservaéisigd A. Key Contributions
for 802.11 — to start with, the cause is ‘blindly’ attributéml The following are the major contributions of this work.
collision (thereby invoking exponential backoff) for a tén e Mechanism for diagnosing wireless packet lossesn
fixed number of re-transmission attempts. Further, cortinuthis paper, we present the first empirical study based ounréail
failure of the re-transmissions is taken as an indication bft patterns of received data for loss diagnosis in 802.11,
weak signal thereby triggering rate-adaptation. For exampspecifically between collision and a weak signal. The key
on experiencing a packet loss the transmitting station Bsubcomponent of our design is th@ollision InferencingEngine
the CW parameter using the BEB algorithm performs a re-COLLIE . COLLIE immediately determines the cause of
transmission of the packet after appropriate backoffssfulyy a packet losswithout requiring any additional transmission
the new CW). If a certain number of re-transmissions fail, #om the wireless client, but by using explicit feedbacknfro
determined by the tunabhort/Long Retry Coumgarameters, the receiver. COLLIE performs intelligent analysis on ieed
the station then decides to attribute the cause for packstito data through a combination of various metrics such as bitte
weak signal, thereby triggering a rate/transmit power geanand symbol-levelerror patterns and received signal strength.
by using appropriate rate adaptation algorithms such ae-AuDur design consists of two components: (i) algorithms which
rate Fallback (ARF) [3] or SampleRate. separate the cases of collision from weak signal through
Such a biased approach of assuming collision as the defampirical analysis; (ii) a protocol which capitalizes oreth
cause for packet loss works well for the dominant laptogddgement from the algorithms by aptly adjusting the cdrrec
based usage scenarios where a user is static most of tifnk-level parameters for 802.11 (backoff for collisionrses
while using the network. However, such usage patterns ag@ta-rate for signal). This results in significant througihgnd
increasingly changing [4] [5] as certain emerging class ¢apacity improvements for high mobility usage scenarios.
applications such Voice or Video over WiFi allow a user to ® Design of 'symbol level' metrics to study wireless
be mobile while communicating with network. This creategrrors: Through COLLIE, we explore new metrics that study
new scenarios where constant adaptation of link parametergor properties at the level of a physical layer symbol.
becomes necessary in order to operate the link at the ‘bds@r example, in Orthogonal Frequency Division Multiplexin
setting. In such high mobility usage scenarios, packetels¢OFDM) employed by 802.11a/g standards, a symbol refers
are more likely to occur due overly optimistic settings fatat to the collection of bits modulated in single unit of time syn
rate/transmit power parameters rather than due to cailisic¢chronously across 48 sub-carriers which constitute a aann
Therefore, the biased approach used by 802.11 could inde find that error patterns appear differently for collision
severe performance penalties by incorrectly attributimigal —versus weak signal when isolated to within a single symbol.
packet losses to collision. We explore the design and realization of these new metrics

As we move to a diverse class of applications and usagj'éCh as Symbol Error Rate (SER), Error Per Symbol (EPS)
scenarios for 802.11, it is becoming increasingly impdrtaff'rther in Section Il. We believe that these metrics could
to be able to diagnose the cause of a packet loss at the Iffk €mployed in other areas such as when estimating link
layer and trigger the correct method of adaptation in redt@ndwidth, quality or capacity. _

time. Attempts to address this problem in an indirect manner ® Démonstrating applications of COLLIE by enhancing

have been observed in the design of recent approaches $$isting link adaptation mechanisms:Mechanisms proposed
rate-adaptation such as RRAA [6]. In RRAA, the statiof! COLL_IE can be _used t@nhan_ceemst_lng link adaptation
does not immediately conclude that a packet loss is due Mgchanisms, enabling them to differentiate between theetos
collision or weak signal. In particular, the station perfisran due to collision and weak signal, and thus make more intelli-
‘RTS test' to identify whether a certain packet loss was d@ent selection pf the transmission parameters. We denzadestr
to a hidden terminal, and if so, adaptively enables the RT&S by enhancing the Auto Rate Fallback (ARF) [3] rate adap-
option to guard against future possibility of collisionsrir tation mechanism with our (_:0II|S|on inferencing C(gmponent
such hidden terminals. (CARA [7] also uses this approach 16'€ observed throughput gains ranged from 20-60% based on
handle a slightly different problem.) However, the philpsg the channel conditions, level of contention, etc.

em_ployed in RRAA ar.]d also mimicked in 8_0?'11 IS to copduct 1Apart from refering to helper dogs for shepherds, COLLIE risAnglo-
active tests or experiments (by retransmitting or sendimg &axon term for “something very useful.”



. I_n_-kernel Imple.mentauon: Through custom dnver—le\_/el COLLIE Server
modifications, we implement COLLIE on a standard Linux (optional) &
laptop platform using an Atheros based wireless card and the

Openhal port of the Madwifi driver. (AP Modme}é/ m
The rest of this paper is organized as follows. First, we

present a detailed overview of COLLIE, with an emphasis on 4»"’# i”RDR‘
the design choices made and various components involved in Qﬁel,x'
the system. In Section I, we identify an appropriate set of 4 &

metrics used for loss diagnosis through targeted expetsnen
designed to understand collisions and a subsequent eaipiric
analysis. Based on these metrics, we design a basic collisio _ ( el ):{)1 Link Adaptation ‘
inferencing scheme and evaluate its accuracy throughaigor MAG
experimentation. Further in Section II-B, we propose egkan
ments to our basic approach using feedback from multiple
APs. In Section Ill, we modify an existing link adaptation

hanism using the COLLIE framework and evaluate i ig. 2. Design of our COLLIE system which consists of threedoles —
mec g e client which implements a majority of the logic, the APigthperforms
performance through experiments over various static and m@nimal packet relaying and an optional backend server ¢fane specific
bile scenarios. In Section IV we discuss the related work afilti-AP extensions).
finally conclude in Section V.

COLLIE Client

to correctly decode the source MAC address of the packet in
B. An Overview of COLLIE error, which is actually quite typical.) Even though it appe

The ideas in COLLIE are motivated from the collisiorvasteful, this unique and somewhat simple, type of feedback
detection mechanism employed by the Ethernet. An Etherffdtcombination with the collision inferencing logic at the
station easily detects a collision by comparing the tratteahi Client, provides surprisingly good performance as shown by
data with the simultaneously received data. We show that) e\?Ur experiments in section IlI.
in 802.11 systems, given a copy of the originally transrditte The collision inferencing algorithm analyzes the data pack
packet and the received error packet, it is possible to malkatt was received in error and makes an educated inference as
an educated inference about the cause of transmissiomefailtp the cause of the packet loss. It uses a set of metrics such
based on the error bit-patterns of this single packet. A remt®s received signal strength (communicated as a part of the
of different metrics are used to discern this cause, the méggdback process), patterns in bit-errors and their Histion,
unique among them are the ones derived out of the constituBatterns insymbol errorsand their distribution, etc. One
PHY-layer symbols of the packet. Once the cause of a pacp'@presting observation in our work is thr@tmbol-level errors
loss is identified, this information is fed into link adapsat Were quite useful in discerning cause of packet losSestion
algorithms (such as transmit power, data rate adaptatimh et! studies this in detail through an empirical analysis.
enabling them to more intelligently select the right set of AP module: As shown in Figure 2, the AP-side imple-
transmission parameters for all subsequent communicationmentation of COLLIE includes a module, that implements the

Our design (Figure 2) involves three components: a clief@mponent to provide the kind of client feedback described
module which resides on a handheld or a wireless laptop, @ove (and in further detail in Section I1). Finally, it optially
AP module which resides on an access point, andgtional iImplements constructs that allow a central COLLIE server to
backend COLLIE server which implements some additionglore accurately determine the cause of a packet loss.
algorithms. COLLIE places most of the optimization logic on COLLIE server (optional): This is an optional component
the client device, and requires only a minimal support froff our design. The COLLIE server implements a simple colli-
the APs. sion inferencing algorithm that utilizes feedback from tiplé

Client module: The client-side COLLIE module resides a@iccess points in the network. We show (in Section 1I-B) that
the link-layer and interacts with the link adaptation alfons. the accuracy of our basic collision detection mechanisms ca
It has access to the physical layer and MAC layer paramet&e greatly improved by using a COLLIE server in additional
and metrics such as signal strength, packet receptions, &cthe above two modules.

Our implementation of COLLIE client module was done in
a standard Linux 2.6 kernel that resides within the wireless
driver as a separate kernel module. This module implementsA critical component in COLLIE is the client side com-
logic to discern the cause of a packet loss to either a amtlisiponent which takes advantage of feedback from the receiver
or a weak signal. This process in the client is facilitatesuch as an AP in WLAN (or a peer if in ad-hoc mode)
through specific feedback from the receiver, i.e., the ARmwhin order to infer the cause of a packet loss (weak signal
the latter receives a packet in error. In particular, the &lBys versus collision). COLLIE implements most of the logic on
the entire packet, received in error, back to the client fahe client device requiring minimal support from the reees/
analysis. (Of course, this is only possible if the AP manag¥®ge describe two versions of this inferencing algorithm. (i)

Il. FEEDBACK-BASED COLLISION INFERENCE



R 7 f Experiment Design for Detecting Collisions

4 Collision
oo W S Figure 3 shows the experiment setup designed to induce
() ((g %mre Effect collisions. 77 and Ty are two transmitters placed a certain
Captore Effact distance apart. ReceiverB; and R, are co-located with
RA R R2 respective transmitters. Receiv& was placed in common
range of both transmitters and was modified to capture and
Fig. 3. Experiment setup designed to study various metrgsiriferring log all packets received (whether correctly or in error)eTh

collisions. chances of collision is greatly increased by disabling &M

. . . : . . level backoffs at bothl}; and 7. The signal between the
A basic version (Single-AP), which requires minimal SuﬂpofransmittersTl, T, and the receivel? was strong enough

from the AP to which the client is associated to. This appli€§, o< to not cause any bit-level errors due to attenuation.

to environments where a single AP provides wireless aceessrhis \as verified through rigorous testing. Both transrstte

the entire establishment, such as in hotspots — coffee shopg, proaqcast packets at a fixed data-rate, thus elimgnatin

apartments, etc. (i) An enhanced version (Multi-AP) Whicgny acknowledgments. All three receivers are opportuityi

builds on tOpAO; the baS|<.:dver5|onr,].bi/] Ieveraglng m(;aut fr(.)r%/nchronized usingommontransmissions received thereby
two or more APs to provide very high accuracy in detectin aintaining a clock skew of less than 18.

collisions. This approach applies to enterprise WLANs weher To construct “ground truth,” we determined the actual set

m_url1t|pr:e QPS beIongAt\c; thr? samle a_dm||n|strat|ve domal_n._ A5t collision events by analyzing the synchronized packgslo
with the basic case, APs here also Implement a very minimglyne receivers and identify packets that overlapped ie.tim
relaying of information that assists in collision inferémg Given that we know a certain collision occurrgeipbserves
We .evallljate our algorllt.hm quant|tat|ve_ly by c0n5|de_r|ng thone of the following: (1) A packet is received correctly, €2)
following (i) the probability of false positives — that ishe packet is received in error, and (3) no packet is receivedeCa
cases where our algorithm outputs a collision while the&ctu; occyrs when signal from one of the transmitter dominates th
cause was weak signal, and (i) the accuracy — that is, tBer resulting in a correct reception due to capture eféase
number of cases our algorithm identifies as collision over occyrs when the respective signals interfere causing bne o
the total number of cases. Our design of metrics, discussgd packets to be received but with errors. Case 3 occurs when
later in this section, allows the link management algoréhm  poth the transmissions were perfectly synchronized, which
specifya certain false positive rate, making the exact accuragys,ited in corruption at the physical-layer header/ptdam
a function of this rate. This choice is by design, thereby,q resulting in a complete frame loss.
leaving a significant control to the actual link management\ye performed various runs of this experiment with different
algorithms in the client. However, to provide a sense of thgya_rates and packet sizes of 1400 and 200 bytes repregenti
strong performance of our algorithms we observe that, givengng/short packets. The distance between the transmitiass
desired false positive rate of 2%, our basic algorithmseehi set 5o as to sustain a certain data-rate for the broadcasitpac

an accuracy of about 60% on average, while the multi-Afhis ensured that no packets were received in errde due
enhacements achieve an accuracy of 95% on average. iy weak signal.

Packets in-error due to weak signal were collected using a
A. Basic Approach (Single AP) simple process. An AP-client pair was used with unicasfitraf
sent from the client to the AP. Rate adaptation was enabled.
The basic algorithm for collision inferencing presentetehe client mobility created a dynamically varying channel tisy
uses a simple relaying back of a data packet received tfygerring link adaptation at a packet loss. These padssgs
error. This relaying is done by the intended recipient of thgere recorded at the AP along with additional information
packet which is the AP to which the client is associated to (§),ch as the Received Signal Strength (RSS), data-rate, etc.
the infrastructure mode of 802.11). Our observations m®ic 3nd used in our analysis. During the experiment, care was
that due to receiver-synchronization using the physiagét taken to ensure no interfering transmitters were preskos t

preamble, data that immediately follows the preamble i§oiding the possibility of packet losses due to collisions
seldom found in error — this includes critical fields in the

header such as the source and destination MAC addres§g8pirical Analysis

Thus, practically for all cases of packets received in eator We present an empirical analysis of a set of metrics over
the AP, it was possible to relay it back to the correct assedia the data collected through targeted experiments desigmed i
client. By analyzing these packets, we design a necessdry #me previous subsection.

sufficient set of metrics comprising of bit-error rates (BER1. Received signal strength (RSS)The received signal
symbol-error rates (SER), error-per-symbol (EPS), andtjoistrength (RSS) refers to the aggregate signal plus intaréer
distributions of these, which can act as strong indicators f(S + I) measured irdBm This is reported by most device
packets suffering collision versus signal attenuation.ndf drivers including theMadwifi driver that we used for our ex-
describe the experiments designed to understand cobisiod periments. The intuition behind using RSS is the followifuy:
identify the set of metrics used for loss diagnosis. packets suffering a collision, their RSS is usually higHert
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that of packets suffering signal attenuation for the sante-daratio of the total number of symbols received in error to
rate. This observation directly follows from the obseroati the total number of symbols in the data packet. The symbol
that packets suffering signal attenuation should have a l@fror rate indicates the actual ‘amount’ if error present in
RSS. the packet. We have studied SER for packets in error due to
Figure 4 plots a cumulative distribution function (CDF) forcollision and weak signal and we found significant overlap in
the distribution of RSS values for packets lost due to doliis its distributions. An analysis of this metric and its distriions
and weak signal. The RSS distributions are further sorté®Rd us to the design of other interesting metrics which show
based on their data-rates; for purposes of clarity we onbyvsh strong results in inferring collision, described next.
data-rates of 24, 36 and 48 Mbps. In all the following plots, (ii) Error-per symbol (EPS):This metric refers to the
the legend 'C’ indicates packets in error due to collisionl araverage number of bits in error among all the symbols which
'S’ indicates the packets in error due to weak signal. Froare in error. This is indicative of the ‘amount’ of error per
the plot in Figure 4 one can observe a clear distinction in tegmbol — unlike bits which have only one possible way of
distribution of RSS for the two categories given the sama-dabeing in error, a 48-bit symbol received in error could have
rate. For example, in this experiment, 98% of packets inrerrgarying ‘amounts’ of error represented by the number of bits
due to weak signal have an RSS of about -73 dBm or less,error. We observe that packets in error due to collisioreha
while only 10% of packets suffering collision have RSS of -73 larger amount of error per symbol. This is shown in Figure
dBm or less. Thus, by using a ‘cutoff’ value of -73 dBm, an@ which plots the CDF of EPS for both collision and weak
it would be possible to capture about 90 % of collision casefgynal. For example, 98% of packets in error due to weak
while incurring a false-positive rate of 2%. Thus, RSS can asignal have an EPS of 28% or less, while 45% packets in
as a good metric for inferring the cause of packet loss.  error due to collision have the same EPS of 28% or less.

2. Bit-error rate (BER): Much like RSS, bit-error rates (i) Symbol error score (S-Scoreffrom our study of the
(BER) for weak signal versus collision can act as a metric tistributions of the symbols in error, we found that packets
distinguish with. Figure 5 plots the CDF of BERs for packeti collision had larger bursts of contiguous symbols in erro
in error, sorted on the data-rates of 24, 36 and 48 Mbps.We designed a metric which uses ‘symbol burst lengths’ and
follows from this plot that packets received in error due teomputes a ‘score’ which we call ti&-Scorethat amplifies
collision have much wider distribution of BER values. Foguch ambient patterns in symbol error burst lengths. We
example much like RSS, 98% of packets in error due to sigreédmpute S-Score as " | |B;|?, where|B;| represents the
have a BER of 12% or less, while only 24% of packets in err@éngth of the symbol-error bursts for burst numbeFigure 7
due to collision have BERs of 12% or less. plots the CDF of the S-Score values for packets in error due to
3. Metrics for capturing ‘symbol-level’ errors: A ‘symbol’ collision versus weak signal. We find that, for example, 98%
refers to a sequence of bits which are transmitted condtlyrerof the packets in error due to weak signal have an S-Score of
through a joint encoding and modulation method at the phys00 or less, while 26% packets in error due to collision have
ical layer. For example, at 6 Mbps, the Orthogonal Frequenan S-Score of 500 or less. Thus, by using a cutoff of 500, we
Division Multiplexing scheme (OFDM) uses a set of 48 subwould be able to detect 74% of collision cases while incigrin
carriers each modulating 1 bit of information. This resiitts a false positive rate of 2%.
the encoding of a sequence of 48 bits in a single time-unit, (iv) Joint distribution of SER and EPSBy considering
which defines a symbol. Studying the patterns of symbols iRe joint distribution of these two metrics it is possible to
error as opposed to just bits received in error can providgstinguish error packets in collision. The intuition fols
valuable information about the cause of a packet loss. Wem the observation that error packets in collision suffer
define a symbol to be in error if any of the bits received afigher symbol-error rates and correspondingly higherrsfro
a part of that symbol are in error. We studied three differeper symbol as a function of the symbol-error rates. From the
metrics which exhibit certain interesting properties whie scatter plot shown in Figure 8, we can observe that for higher
leverage in our collision inference algorithm. Note thatlea values of SER, the values of EPS get streamlined into a high
of these metrics are computed over every single error packgét narrow range allowing for a more accurate prediction of
(i) Symbol-error rate (SER)Like the BER, this is the collision versus signal as to the cause of a packet loss.
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TABLE |

COLLISION DETECTIONACCURACY AND FALSE POSITIVE RATES low false positive ratio. For the cases of collision, we see

that the correlation drops down a little to around 85%, which

BER | EPS | S-Score || Metric-Vote improves the accuracy of Metric-Vote scheme.
Accuracy 0.550 | 0.524 0.441 0.597 . .. . .
False Positives|| 0.0057 | 0.022 | 0.0126 0.024 Some obs_ervatlonsFrom our empirical study in the previ-
ous subsection, we found that there were a certain set of case
TABLE I where inferring collision was becoming a challenge. We now

CORRELATIONBETWEEN THEMETRICS exp|a|n these issues in detail:

BER/EPS

S-Score/lEPS

BER/S-Score

Collision

0.840

0.963

0.854

Weak Signal

0.981

0.993

0.975

(i) Using RSS as a metri@&lthough in general RSS acted
as a good indicator of the cause of a frame loss, in some of the
cases it was not able to distinguish well between the cases of

collision and weak signal. This can be mainly attributedhte t
o _ _ _ observed temporal variation in RSS [8]. Estimating a ’cffit-o
Collision Inferencing Algorithm — Metric-Vote Scheme value also becomes harder because the delivery probability

Our basic collision inferencing algorithm is fairly simpleis actually a function of (i) signal-to-noise ratis}/ (1 + V)
It computes the metrics discussed above on the single deggher than(S + I) which is reported by most wireless cards
packet that was received in error (relayed back by the AP).apd (i) receiver sensitivity [8]. However, we feel that RS
any of the metrics indicate (vote for) a collision, the aljom @ Promising metric and could act very well when used with
outputs collision as its inference. Even with such an agives additional information such as RF profile of the receivers.
approach, over the experiments performed in this sectien, w (i) Impact of physical-layer capturéiVe found that there
find that for a false positive rate of 2% (a tunable paramgtewyere cases of collision where the average BER for the error
our basic approach yields a reasonable accuracy. Tablevssh@acket was very low due to whats known as tagture effect
the results for the metrics BER, EPS, S-Score and Metricapture effect refers to the phenomenon that during a oilis
\ote. For the cases of collision, we see that Metric-Vote h#ze packet with stronger signal is received with almost no
an accuracy of about 60% on an average. Later in Section BIyfors or a few bits in error. This experiment set up used to
we show that even a 60% accuracy in collision prediction caneasure the impact of capture effect was very similar to that
translate to significant gains in terms of throughput andggne shown in Figure 3 except that now the receiyis very close
Next in section 1I-B, we also study further enhancements t6 the transmittef/; which resulted in a strong capture. By
this basic scheme using support from multiple APs that c&arefully searching for the packets received in error ffbm
improve the accuracy to about 95% on average. For each(@@e to a collision from a concurrent transmission fr@h),
the metrics and the Metric-Vote scheme, Table | also shoess te found that about 80% of packets in collision experiencing
false positive rate — the percentage of error packets (cauggpture effect, were received with about 12% or less bits in
due to weak signal) which the algorithms incorrectly idgnti error. This falls within our target margin of 2% false posit
as the cases of collision. We see that Metric-Vote scherff the signal case thereby impacting accuracy. The acgurac
also has a low false positive rate of 2.4%. It is importar@tf Metric-Vote scheme for strong capture effect cases was
to understand that the collision detection algorithms &houfound to be around 28%.
maintain a low false positive rate. While it is beneficial ® b (iii) Effect of colliding packet sizeUsing the set up in
able to decide if the packet was in error due to weak signal Bigure 3, we also measured the bit error rates in collision
collision, it would be rather costly in terms of retransross cases for varying packet sizes. Figure 9 shows a scatter
if we incorrectly identify a packet to be in error because gflot of RSS and BER for the cases of (i) weak signal (i)
collision, when in reality it was due to a weak signal. Tableollision between a 1400-byte packet and a 200-byte packet
Il shows the correlation between the metrics — the percentggi) collision between two 1400-byte packets. While it igar
of cases where the metrics agree on their decision about that using RSS in this case clearly distinguishes between th
cause of the packet loss. For the cases of weak signal, tases of collision and weak signal, using BER does not peovid
correlation between the metrics is extremely high (arourde same level of accuracy. In particular, we see that it ineso
98%) evident from the fact thatll the metrics have a very difficult to distinguish between cases (i) and (ii) using BER



COLLIE Module Summary of tasks
Client Collision inference, selective re-tx based Diff
AP Return packet in error, re-construct packet oiff
Server Facilitate multi-AP collision detection
TABLE Il

COLLIE -BASED LINK ADAPTATION TASKS IN DIFFERENT MODULES

Collision Detection Accuracy
oo m
T NhRO RN
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Wigh Capture Effect Low Capture Sffect was implemented over a central COLLIE server. Through
(Multi-AP approach improves accuracy) (Basic approach works wel) experiments over a simple testbed consisting of two APs and
two clients we study the accuracy of our approach of using
feedback from multiple APs.

Figure 10 shows the accuracy in collision inference using

because a smaller colliding packet (200-byte in this cas}" multi-AP implementation. For the two scenarios where

would cause fewer bits in error. On the other hand, as shoffPture effect is dominant which were computed through
in Figure 8, the joint distribution of SER and EPS is useful ifxPerimentation within our indoor network environment th
distinguishing these cases. multi-AP approach improves the accuracy of collision de-

tection to about 95%. These two scenarios correspond to
B. Multi-AP assisted enhancements configurations where packet transmission dominate from one

: . of the two clients respectively. For the two scenarios where
The accuracy of our basic approach can be greatly improy ture effect is weak, both approaches provide good levels
if feedback from multiple APs on the packet loss coul f accuracy

taken into consideration. This is feasible in an enterprise
WLAN where APs operate in a coordinated fashion as a I1l. USING COLLIE FORLINK ADAPTATION
part of a single network. First, we present an algorithm that|n this section we present a simple, yet effective protocol
uses feedback from multiple APs to improve the accuracy @éed to enhance link adaptation mechanisms based on the
collision inferencing. Next, through experiments, we shibat COLLIE framework. The algorithm implemented in this sim-
such an approach can yield good results in a practical gettiple protocol is only to serve as a reference implementation
By leveraging feedback from two or more APs, we presenf COLLIE and is by no means is an optimal algorithm. The
an algorithm that can detect such cases and improve @al of this description is to demonstrate how COLLIE can be
accuracy of collision inferencing. Our algorithm works byffective in making more intelligent link adaptation décis
aggregating such feedback at a central COLLIE server, shoading to improvements in throughput.
earlier in Figure 2. The APs implement two functionalities COLLIE-based link adaptation protocol: The goal of this
(i) they synchronize among each other much like the receivéink adaptation protocol is to utilize the collision inferee
R, and R, did for our experiments earlier in this sectionresults available from COLLIE in deciding how to best react
This synchronization is done using opportunistic comman a packet loss and its consequent recovery. Considerra clie
packets received by the two APs on either the wired or tlyehich transmits a packet to an AP, but the latter receives the
wireless segment. (i) for any packet received in error,ar f packet in error. Using feedback mechanisms, as outlined in
physical-layer error indications, the APs send a messatfeeto Section 1l and shown in Figure 2, the client can infer the
COLLIE server with the time the packet (or error indicationgause of the packet error. This knowledge is, then, fed into
was received, the source/destination MAC addresses and déie link adaptation decision at the client. If the packeslis
rate information for the packet received in error. due to a collision, then the correct adaptation mechanism is
The COLLIE server implements a simple collision inferperform exponential backoff. On the other hand, if the packe
encing algorithm that uses time-of-receipt informatiomatb loss is determined to be due to a weak signal, then we allow an
packets received in error at the APs, and combines this wihkisting rate adaptation algorithm to explore and find adbett
information about the data-rate of the packet received tfata rate to transmit future packets. In general, any exjsti
make an inference as to whether the packets did experienate adaptation algorithm, e.g., RRAA, SampleRate, AARF,
a collision. As a part of this algorithm the COLLIE servemand ARF, can be used here to leverage such feedback from
compares input from pairs (or a set) of APs that are known @OLLIE. We explain this in the context of one of the simplest
be within range of each other. Detection of APs that are withalgorithm — Auto Rate Fallback (ARF). ARF uses the history
range of each other is implemented through passive mongoriof previous transmission error rates to adaptively selhet t
of beacons. Scenarios where APs are within each other'sramigta rates used for future transmissions. That is, aftenebeu
are becoming fairly common in todays WLANS. In fact, densef consecutive successful transmissions, the sender @ttem
deployment of APs is promoted as an architecture for next transmit at a higher rate and if the delivery of this frame
generation WLANSs [9]. is unsuccessful, it immediately falls back to the previgusl
We have implemented this approach over standard Linsypported mode. In our implementation, we augment the ARF
based APs and clients. The collision inference algorithalgorithm with COLLIE to make it collision-aware.

Fig. 10. Improvements in collision detection accuracy gsihe Multi-AP
approach.
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In addition, the feedback on the erroneous packet provididgnamic channel conditions. Figure 15 plots the throughput
another opportunity of optimization during re-transmossi over time for both with and without COLLIE . We observe that
of a incorrectly received packet at the AP — selective rehroughput improvements using COLLIE range from around
transmission of packet segments in error. By examining ti®% to as high as 65% for the mobile scenarios. This is
erroneous packet, the client knows exactly the set of bas ttbecause COLLIE provides the rate adaptation mechanism with
were in error. If the number of bits in error is low (say, nothe information about the cause of the packet loss, thereby
more than 20% of the entire packet), then it is advantagedusping it choose the correct transmission parameters.
to create aDiff bitmap of these bits in error and to send only Experiment #4: Emulating a voice call —In this experi-
this Diff bitmap to the AP piggybacked with the next packenent, we wanted to emulate the behavior of voice traffic on
transmission. If theDiff bitmap is correctly received, thenthe wireless medium. To do this, we made a 4 minute voice
the AP can re-construct the original packet thereby redycinall using the Netgear SPH101 VoWiFi phone over Skype. For
the retransmission related costs associated with thetclighe duration of the call, we collected the set of packets that
Table Ill summarizes the different implementation aspecigere sent, the time instants when they were sent, the packet
of this protocol. Note that our implementation has all theizes etc. and then replayed the exact sequence of transmis-
overheads due to the AP’s transmission of the erroneougpadions between the wireless laptop and the access point. We
feedback, which is therefore, reflected in our performancenducted this experiment for low, medium and high mobility
evaluation presented next. scenarios. The ‘Slow’ speed represents a stationary usgbr wi
sporadic movement while the ‘High’ speed corresponds to a
walking user continuously moving with a speed of about 0.5

We now present an evaluation of COLLIE-enhanced linfgsec inside a building. Figure 16 shows the number of vehste
adaptations through experiments conducted in variouf stg§p2.11 transmissions — transmissions that were not success
and mobile scenarios: _ _ fully received at the Access Point (AP). Under relativelgthi

Experiment #1: Static scenario —Figure 11 shows the mopility conditions the percentage of wasted transmission
throughput of a static wireless client (with and without GOLfor 802.11 exceeded 80%. However, under the same mobility
LIE ) forincreasing distance between the client and the A®. Viatterns, COLLIE achieves a reduction in wasted transofissi
see that as the distance between the client and AP increa§9sa 40% for each of the mobility scenarios. This would not
there is a corresponding drop in the throughput for both thgy improve the voice quality but also result in lesser gyer

cases. However, using COLLIE results in throughput gaiRgsts on the battery constrained mobile device.
of as high as 52%. On an average, we observed throughput

gains of around 30%. Note that, these results account for the IV. RELATED WORK
transmission overhead involved in the receiver feedbaak. W The problem of loss diagnosis is a fairly difficult one, and
see that after an initial increase, the throughput gaing drthere has been a few prior efforts in the wireless domain that
with the increase in distance. This is because as the charimele tried to address this problem. For example, Whitehouse
becomes error-prone, it also becomes difficult for the A&t al. [10] showed that if two frames arrive at a receivehwit
to successfully transmit the feedback. Figure 11 shows thartain timing characteristics (the second message araifter
increase in throughput gains are almost negligible (2%) fthe preamble and start bytes of the first message) and with
these cases. Figure 12 plots the throughput of the clientcatrtain power levels (the second message has significantly
a particular distance over time. As before, we see that usihigher power level when compared to the first) then it was
COLLIE improves the throughput by around 30%. possible for the receiver to conclude that collision hadegd,
Experiment #2: Additional collision sources —We re- occurred. This mechanism was implemented on the Mica2
peated the above experiment in presence of additionasumili sensor mote platform using a 433 MHz Chipcon CC1000 radio
sources (Figure 13). Figure 14 shows the throughput improveansceiver, and required low-level access to timing agdagi
ments with and without COLLIE . We see that using COLLIEtrength measurements that were available on that platiorm
results in throughput gains of as high as 60%. comparison, COLLIE is implemented for off-the-shelf 80R.1
Experiment #3: Mobile scenario —For this experiment, wireless transceivers that do not provide such low-levetas
the client position was continuously varied thereby indgci to communication parameters. Hence, the mechanisms in [10]

Experimental Results
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Fig. 14. Throughput gains of COLLIE in presence Fig 15. Observed throughput for mobile scendri@. 16. Wasted (re)-transmission as a function of
of collision sources channel variability induced through node mobility.

could not be applied in this environment. In other work, Yuin collision while allowing a configurable false positivetea
and Seo [11] propose another related mechanism for cailisiof 2% and lead to throughput improvements between 20-
detection in 802.11 links by measuring the RF energy and 88%. Through an emulation of voice call (made using the
changes during such an event. This work was done througbtgear SPH101 Voice-over-WiFi phone), we also showed
simulations alone, and based on our experimental evatuatihat COLLIE reduces retransmission related costs by 40% for
may not work well in practice. different mobility scenarios. Since all analysis perfodrie
Rate adaptation mechanisms like RRAA [6] and CARA [7{his paper was based on actual experiments and implementa-
have, also, tried to address the problem of collision ditect tion over contemporary 802.11 hardware, we expect that the
in an indirect manner. CARA tries to detect collisions byngsi implications of our results and the various insights gaiineuh
the RTS-CTS mechanism, but the proposed mechanism fafigs study will be very useful in other problem domains sugh a
in the presence of hidden terminals. CARA also suffers frotimk adaptation, channel management, transmit power obntr
RTS oscillation [6] which RRAA solves using an adaptivetc., where understanding the link behavior is critical.
RTS filter. Unlike both RRAA and CARA which try to
estimate the collision probabilities by active probingirfgs
an RTS), COLLIE employs direct approach by conducting [1l Kenneth W. Ouyang, Yin-Kung Huang, and Phil Shieh, “Auto
L . . adjustment circuit for collision detection of ethernet;SWatent No
an empirical post-factum analysis based on receiver fe#dba 378574 1906,
There is a growing interest in the wireless networking?2] J. Bicket, “Bit-rate selection in wireless networks, TMMaster’s Thesis,
community to integrate hints from the physical layer, e.g., 2005 ) _
. . h [3] A. Kamerman and L. Monteban, “Wavelan ii; A high-perfaance
symbol level information, to solve certain MAC level prob- ™" |t an for the unlicensed band.” 1997.
lems. One recent example is work by Jamieson et. al. [124] T. Henderson, D. Kotz, and I. Abyzov, “The changing usafja mature
for partial packet recovery and throughput improvement in5] \‘ja”épgmvc‘)'\iﬂsi Wi{:'eailreRNO'\r/'ﬁﬁ mCMBQfaCl’(E'S%S;\f] Zg%‘-s den
wireless networks. COLLIE also uses information derived A m):easurem)ént 'study’of .\lehiCl’.Ilal’. internet acceés using'.tmvsi-fiy

from the physical layer symbols for diagnosing theuseof networks,” inMOBICOM, 2006.
a packet loss. [6] S. Wong, S. Lu, H. Yang, and V. Bhargavan, “Robust ratepéation

. . . . for 802.11 wireless networks,” iACM Mobicom 2006.
Use of multiple receivers has also been exploited prevyous'[?] J. Kim et al., “Cara: Collision-aware rate adaptationr feee 802.11

in the context of improving throughput in wireless networks = wians in Infocom 2006, pp. 139-150.

e.g., the Multi-Radio Diversity (MRD) System [15]. More [8] C. Reis, R. Mahajan, M. Rodrig, D. Wetherall, and J. Zgdwor

specifically, mechanisms proposed in MRD use multiple re-  Measurementbased models of delivery and interferencstafic wire-

ceivers torecoverfrom bit errors and improve loss resilience, [9] “Mobile Edge Architecture of Aruba Wireless Networks,”
whereas COLLIE uses multiple receivers to determine the URL:http:/mww.arubanetworks.com/technology/mobile-

e : : edge/architecture.
cause of the packet lossd uses this information for adaptmg[lo] K. Whitehouse, A. Woo, F. Jiang, J. Polastre, and D GuliExploiting

link transmission parameters. Jigsaw [16] also uses irderm  the capture effect for collision detection and recovery’EmNetS-11
tion from multiple receivers to provide a global cross-laye 2005

. . . . 11] Ji-Hoon Yun and Seung-Woo Seo, “Collision detectiorsdzh on rf
viewpoint for enterprise wireless network management. energy duration in ieee 802.11 wireless lan"Gpmsware 2006.

V.. CONCLUSION [12] K: Jamieson and H_. Balakrishnan, “Ppr: Partial paclegovery for
) ] wireless networks,” iPACM SIGCOMM 2007.
In this paper, we have tried to address the fundamentsd] G. Holland, N. Vaidya, and Bahl. V., “A rate-adaptive engrotocol for
issue of identifying the cause of an erroneous packet riggept _ multihop wireless networks,” i\CM Mobicom 2001.

. . . 14] A. Kochut, A. Vasan, A.U. Shankar, and A. Agrawala, “Bigi out the
in 802.11 systems. Unlike most of the previous approachés, correct physical layer capture model in 802.11b.IGNP, 2004.

our proposed mechanism, COLLIE employs a direct approajgh] Allen Miu, Hari Balakrishnan, and Can Emre Koksal, “Imping loss

by using explicit feedback from the receiver to immediately resilience with multi-radio diversity in wireless netwstk in ACM
MOBICOM, 2005.

determi_ne the cause of the packet loss. Through. rigoro[ga Y. Cheng, J. Bellardo, Péter Benks, A. Snoeren, G.IRdre and
evaluations conducted on regular laptops over a wide range S. Savage, “Jigsaw: solving the puzzle of enterprise 80artlysis,”

of experiments, we find that our collision inferencing mech- SIGCOMM 2006.
anisms can provide upto 95% accuracy in detecting packets
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