(CS5H20: Lecture 6 handout
State Minimization in Finite Automata

February 12, 2008

DFAs accepting a certain language are not necessarily unique. For example, the two DFAs below en-
code the same language L = {w|w contains an even number of a’s}. Tt is clear that the third state of the
automaton My is redundant and can be merged with its first state.

In this lecture we will discuss the following questions — Given a language L, what is the smallest (and
therefore simplest) DFA recognizing L? Is the smallest such DFA unique? Given a DFA, can we determine
which of its states are redundant? How do we eliminate those states?

Theorem 1 For every reqular language L, there exists a unique (up to re-labeling of the states) minimal
DFA M, such that L = L(M).

The key to proving this theorem is to define an equivalence relation between states of a DFA. Intuitively,
two states are equivalent if upon starting in one of those states and reading any string, the behavior of
the DFA is identical to starting in the other state and reading the same string. In order to formalize this
equivalence relation, we first extend the transition function so that its second argument can be a string and
not just a symbol from the alphabet.

Definition 1 Given a DFA M = (Q, %, 6, qo, F'), the extended transition function 5 QX X* — Q is defined

recursively as follows:

S(Q? €)=q
S(qv CL) = 6(q7 CL) Va ex
S(qv CL’LU) = 8(6(q7 CL), w) Va S E,’(U (S E*

Intuitively 5((], w) tells us the state we end up in when we start at g and read the string w.

Definition 2 A string w € $* distinguishes states q1 from g if 6(q1, w) € F but §(qz,w) & F, or vice versa.
Two states g1 and g2 are indistinguishable (written g1 ~ q2), if no string in X* distinguishes them, or in
other words, for all w € ¥*, 0(q1,w) € F if and only if (g2, w) € F.

When a string w distinguishes states ¢; and g2, w acts as witness to the fact that ¢; and g2 behave
differently and are not equivalent to each other. In the figure above, for example, the states 1 and 2 in M,
are distinguishable because the string ab distinguishes them—starting in 2 we accept the string ab, ending
at 3, but starting in 1 we reject it because we end up at 2. On the other hand, the states 1 and 3 are
indistinguishable. There is no string that distinguishes them.
~ is an equivalence relation:

o g ~ q (reflexive)
e p~gq = g~ p (symmetric)
e p~qgand g~r = p~r (transitive)

This means that given any DFA M = (Q, X, 4, qo, F'), we can partition its states into equivalence classes
based on ~. We use [¢] to denote the class containing the state q.

lq] = {plp ~ ¢}

Now, let us define a new DFA M’ that contains one state for every equivalence class in M.

M/ = (Ql7255/’q/ F/)

09

Q" ={ldllq € Q}

Q6 = [QO]

F'={[qllq € F}
d'([q], @) = [0(g, a)]

We claim that the DFAs M and M’ are equivalent. That is, L(M) = L(M").

However, before we prove that, we need to argue that M’ is properly defined. In particular, suppose that
[p] = [q] for two distinct states p and ¢ in Q. Then, ¢ must be defined such that ¢'([p],a) = §'([q], a) for
all symbols a € ¥. In other words, we need to show that [0(p,a)] = [0(q,a)], or d(p,a) ~ d(q,a), whenever
p~gq.

We can prove this by contradiction. In particular, suppose that p ~ ¢ but §(p,a) # §(q,a). Specifi-
cally, there is a string w € ¥* that distinguishes 6(p,a) and §(q,a). Without loss of generality, say that
5(6(p,a), w) € F but 6(6(q,a),w) ¢ F. Then, by the definition of 8, we have 6(p, aw) € F but (g, aw) ¢ F.
This means that aw distinguishes p and ¢ and contradicts our assumption that p ~ g. Therefore, ¢’ is
properly defined.

Now let us argue that M and M’ accept the same language. First, we can prove by induction that for
any string w € £* and state ¢ € Q, 0([g], w) = [6(¢,w)]. The base case follows from the definition of ¢'.
The details are left as exercise to the reader.

The rest of the proof is straightforward. Suppose that M accepts a string x € X*. This means that
5(qo, z) € F. Then & ([qo], z) = [0(qo, x)] € F' by the definition of F’, and M’ accepts the string too. Next
suppose that M’ accepts the string z, that is, 0’([qo], 2) € F. Let 6(go,) = p. Then [p] € F’. This means
that there exists a state ¢ ~ p such that ¢ € F (by the definition of F’). But then it must be the case that
p € F, otherwise the empty string ¢ would distinguish the states p and ¢q. Therefore, § (go,x) € F and M
accepts the string.

We will now prove that the DFA M’ is the unique smallest DFA recognizing the language L = L(M).

A DFA is called minimal if every pair of distinct states in the DFA are distinguishable. It is straighforward
to see that M’ is minimal. We now claim that any two minimal DFAs recognizing the same language must
be equivalent upto a renaming of the states (and in particular have the same number of states).

Suppose that M7 = (Q1,%,91,q1, F1) and My = (Q2,X, 02, g2, F2) are two minimal DFAs with L(M;) =
L(Mz). Consider a mapping f from the states of My to those of My, defined as follows: (1) f(q1) = f(q2);
(2) if for some string w € ¥*, 01(q1, w) = p1 and d2(ga, w) = pa, then f(p1) = pa.

We first note that the mapping f is a function, that is, it maps every state p; € Q1 to a unique state
in Q2. Let us prove this by contradiction. Suppose that f maps p; to two distinct states pa and pj in Qs.
That is, by definition, there are two strings x and y such that 51(q1,:1:) = 51(q1,y) = p1, Sg(qg,x) = Py
and 52(q2,y) = p,. Then, since My is minimal, and therefore, ps and pj are distinguishable there is a
string z such that 52(192, z) € Fy and 52(192, z) € Fy. That is, 52((]2,902) € F5 and 62(q2,yz) Z Fy. Since
M1 and My accept the same language, it must be the case that 51 (q1,z2) € Fy and 51 (q1,y2) ¢ F1. But
61(q1,x) = 61(q1,y) = p1. Then the first statement implies that 61 (p1,2) € Fi and the second implies that
51 (p1,2) € Fi. We arrive at a contradiction.

Likewise we can prove that f cannot map two distinct states in Q1 to the same state in Q2. This means
that f is a one-one mapping, and |Q1]| = |Q2|. Furthermore, we can verify that f(d1(p1,a)) = d2(f(p1),a)
for all p; € Q1 and a € X. Therefore, the two DFAs are equivalent.

This concludes the proof of Theorem 1 above.

In the next lecture we will give an algorithm for finding the equivalence classes under ~ for any given
DFA.

