
CS 577: Introduction to Algorithms Homework 5

Out: 02/24/16 Due: 03/02/16

Ground Rules
• See HW1.

• Both problems will be graded.

Problems
1. Imagine you are a summer intern at a large financial services company. To test your acumen, your boss gives

you the following job. The market offers n investments; the i-th one can be bought for ci and sold (30 days
later) for pi. We assume that pi ≥ ci > 0 for all i. You must buy exactly r of these, and your bonus for this
exercise will not reflect the net profit, but rather the return ratio∑

i∈S pi∑
i∈S ci

.

Your goal is to find an optimal set S of size r that maximizes this ratio.

(a) Show that a greedy algorithm that selects the r investments with the largest pi/ci ratio does not always
produce the optimal solution. (Give a counterexample.)

(b) Your colleague claims that you can use dynamic programming to solve this problem based on the following
principle of optimality. Let OPT(i, r) denote an optimal subset of options {i, · · · , n} of size r.

Claimed principle of optimality: OPT(1, r) is either OPT(2, r) or {1} ∪ OPT(2, r − 1)

Give a counterexample showing that this property is not true.

(c) Suppose that you are told that the optimal solution achieves a ratio y. Give a greedy algorithm for finding
the set of size r that achieves that ratio. If y is not the correct ratio, can your algorithm determine whether
this guess is too large or too small?

(d) Use your solution to part (c) to develop a polynomial time algorithm for solving this problem. Give a brief
argument of correctness, and analyze the running time of your algorithm.

2. A complex linear structure is to be assembled out of n smaller pieces. We will think of each piece as an interval
[a, b]. The joining operation takes [a, b] and [b, c] and produces [a, c]. After joining, each subpart must be tested.
Assume that the cost to test [u, v] is given by f(u, v) > 0.

Different assembly orders potentially have different total testing cost. For example, suppose that we have three
pieces corresponding to intervals [1, 2], [2, 3], and [3, 4], and the cost of testing is given by: f(1, 3) = 3,
f(2, 4) = 1, and f(1, 4) = 5. Then assembling the first and second pieces first and then joining them with
the third has a total testing cost of f(1, 3) + f(1, 4) = 8, whereas assembling the second and third pieces first
and then joining them with the first has a total testing cost of f(2, 4) + f(1, 4) = 6. Therefore, the second
assembly order is preferable.

Design an O(n2) algorithm to find an optimal (least total testing cost) assembly order. Give a brief argument of
correctness, and analyze the running time.

Hint: Use dynamic programming. What should the principle of optimality say in this case?


