CS787: Advanced Algorithms Final Exam
Out: 12/10/07 Due: 12/17/07

Guiddlines

e This exam consists of 4 questions. Please answer all qassfitie point distribution is noted below.
e Please return your solutions to Shuchi before midnight omdiéy, Dec 17.

e Collaboration is not allowed. Please refrain from consgltiny sources other than the class notes for this exam.

Problems

1. (4 points) In class, we analyzed an estimator for the second frequencyentu, = Zie[n] m? (herem; is
the number of copies that we see of elemgntHere the basic form of the estimator consisted of a counter
Z =, miY; (Yi €uar. {+1,—1}) and the value of the estimator wZg. A number of independent copies
of this scheme were required to obtain a good estimate with piobability. Consider the following variant to
estimateus = Zie[n] m3 : Maintain a counte = >, m;Y;, where each; is picked uniformly and at random
from {1, w,w?} (herew is a complex cube root of unity, i.e.? = 1, w # 1). For the purpose of this question,
ignore the issues of independence in the choic&§ ahd assume that a¥i; are picked independently.

(@) Show thaE[Z3] = us.

(b) Consider the estimator R&*] = the real part ofZ®. Give an upper bound on the number of independent
copies of this estimator needed to obtaih-& e approximation ofuz with probability1 — 6.

2. (3 points) Consider the following variant of the Move-To-Front algbm for the list update problem—When
an element at positiok in the list is accessedjalf-MTF moves the element to positidit/2|. Prove that
Half-MTF is 4-competitive for the list update problem.

3. (8 points) Given a graphG = (V, E) with capacitiesc(u,v) on edgequ,v) € E, and a set of source-sink
pairsD C V x V with “demands’d(s, t) for every(s,t) € D, thesparsity of a cut(S, S), with S C V, and
S =V\ S, is defined as the ratio of the total capacity of the edgesggainoss the cut to the total demand cut.
That s,

Z(u,v)eEm(SXS) c(u,v)

2 (s.tyepn(sxg) 48, t)

In the Sparsest Cut problem, our goal is to find a sétwith the minimum possible sparsity( S, S).

a(S,S) =

(a) Prove that the following LP is a relaxation of the Spar€aa problem. (In other words, for every feasible
solution of the Sparsest Cut problem, we can construct deasolution to this LP with the same cost.)
HereP; , for (s,t) € D denotes the set of all paths betweeandt.

(b) Note that the size of the given LP is exponential in the sizthe problem. Give a polynomial-size linear
program that is equivalent to this one (that is, any solutiom the first can be coverted into a solution for
the second with the same cost, and vice versa).

(c) Find the dual of the above LP. Give a natural interpretattd this dual in terms of flows. You may assume
thatD N E = (.
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(d) Consider an instance of the Sparsest Cut problem witheaiagpnoder € V called the root, and C
V x {r}. (Thatis, the sink in every source-sink pairi$ Prove that for any such instance, the “integrality
gap” of the above LP i%. In other words, given an optimal solution to the above LP & @me up with
a solution to the Sparsest Cut problem with no larger cost.
(Note that feasible solutions for Sparsest Cut do not neciéssorrespond to integral solutions for the
above LP; So the term integrality gap is a misnomer here.)

4. (5points) In this question we will use gradient descent to solve thefahg online linear optimization problem.
We are given a convex sét in ann dimensional space. At stepe [0, 7], our algorithm needs to output a
vectorz! € F, and is then given a cost functieh € R™. The cost of our algorithm at stegs the dot product
between:! andz?, thatis) ", cfz!. The goal of the algorithm is to minimize its total cost ovéitiae steps.
We compare the performance of the algorithm against theesiregtorz € F that minimizesy_, z - ¢'.

Note that this is like a typical online learning problem, egtthat the experts here are all vectorns F', so a
regular application of the exponential updates methodfeasible. On the other hand, we can make use of the
fact that the costs or losses of different experts are m:tateach other through the vectefs

Consider the following gradient descent algorithm for gisblem. (The algorithm should be reminiscent of
the perceptron algorithm discussed in class.)

(i) Startwith an arbitrary vectar® € F.
(i) At stept, output the current vectar’.
(iii) Upon obtaining the cost vectaf, update the current vector as followg: = x?* — =
If y* € F, thenz'*! = ¢, otherwisez'"! = argmin, . p|z — y'|.

Here|z — y| for z,y € R™ denotes the Euclidean distance between the two vectorgzadeénotedx — 0|
where0 is the all-zeroes vector.

We will bound the performance of this algorithm in terms df thllowing input parameters: the diameter of the
setF, A = max, yer |z — y/, and the size of the cost vectofs= max; |c!|.

(a) Forarbitrary vectorg € F' andv € R", suppose that = argmin, . ».|x —v|. Prove thatu —w| < [u—v|.
(Hint: Use a geometric argument along with the fact that F' is convex.)
(b) Letz* € F be the optimal solution, that s, the single vector that miaes), z - ¢*. We will now analyze

the progress over time of our vectdrtowardsz*. Using part (a), give an upper bound jaiit! — 2*|? in
terms of|z! — z*|2, the cost of the algorithm at stépand the cost of* at stept.

(Hint: Use the fact that for any two vectorsa and b, |a + b|? = |a|? + 2a - b + |b|2.)
(c) Use part (b) to prove that the algorithm’s total cost ismare than the total cost af* plusO(v/T (A% +
5%))



