
CS 787: Advanced Algorithms Final Exam

Out: 12/10/07 Due: 12/17/07

Guidelines

• This exam consists of 4 questions. Please answer all questions. The point distribution is noted below.

• Please return your solutions to Shuchi before midnight on Monday, Dec 17.

• Collaboration is not allowed. Please refrain from consulting any sources other than the class notes for this exam.

Problems

1. (4 points) In class, we analyzed an estimator for the second frequency momentµ2 =
∑

i∈[n] m
2
i (heremi is

the number of copies that we see of elementi). Here the basic form of the estimator consisted of a counter
Z =

∑
i miYi (Yi ∈u.a.r. {+1,−1}) and the value of the estimator wasZ2. A number of independent copies

of this scheme were required to obtain a good estimate with high probability. Consider the following variant to
estimateµ3 =

∑
i∈[n] m

3
i : Maintain a counterZ =

∑
i miYi, where eachYi is picked uniformly and at random

from {1, ω, ω2} (hereω is a complex cube root of unity, i.e.,ω3 = 1, ω 6= 1). For the purpose of this question,
ignore the issues of independence in the choices ofYi and assume that allYi are picked independently.

(a) Show thatE[Z3] = µ3.

(b) Consider the estimator Re[Z3] = the real part ofZ3. Give an upper bound on the number of independent
copies of this estimator needed to obtain a1 + ε approximation ofµ3 with probability1 − δ.

2. (3 points) Consider the following variant of the Move-To-Front algorithm for the list update problem—When
an element at positionk in the list is accessed,Half-MTF moves the element to positionbk/2c. Prove that
Half-MTF is 4-competitive for the list update problem.

3. (8 points) Given a graphG = (V, E) with capacitiesc(u, v) on edges(u, v) ∈ E, and a set of source-sink
pairsD ⊂ V × V with “demands”d(s, t) for every(s, t) ∈ D, thesparsity of a cut(S, S̄), with S ⊆ V , and
S̄ = V \ S, is defined as the ratio of the total capacity of the edges going across the cut to the total demand cut.
That is,

α(S, S̄) =

∑
(u,v)∈E∩(S×S̄) c(u, v)

∑
(s,t)∈D∩(S×S̄) d(s, t)

In theSparsest Cut problem, our goal is to find a setS with the minimum possible sparsityα(S, S̄).

(a) Prove that the following LP is a relaxation of the Sparsest Cut problem. (In other words, for every feasible
solution of the Sparsest Cut problem, we can construct a feasible solution to this LP with the same cost.)
HerePs,t for (s, t) ∈ D denotes the set of all paths betweens andt.

(b) Note that the size of the given LP is exponential in the size of the problem. Give a polynomial-size linear
program that is equivalent to this one (that is, any solutionfrom the first can be coverted into a solution for
the second with the same cost, and vice versa).

(c) Find the dual of the above LP. Give a natural interpretation to this dual in terms of flows. You may assume
thatD ∩ E = ∅.
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minimize
∑

(u,v)∈E

c(u, v)xu,v

subject to
∑

(s,t)∈D

d(s, t)xs,t ≥ 1

xs,t ≤
∑

(u,v)∈P

xu,v ∀(s, t) ∈ D, ∀P ∈ Ps,t

xu,v ≥ 0 ∀u, v ∈ E ∪ D

(d) Consider an instance of the Sparsest Cut problem with a special noder ∈ V called the root, andD ⊂
V ×{r}. (That is, the sink in every source-sink pair isr.) Prove that for any such instance, the “integrality
gap” of the above LP is1. In other words, given an optimal solution to the above LP we can come up with
a solution to the Sparsest Cut problem with no larger cost.
(Note that feasible solutions for Sparsest Cut do not necessarily correspond to integral solutions for the
above LP; So the term integrality gap is a misnomer here.)

4. (5 points) In this question we will use gradient descent to solve the following online linear optimization problem.
We are given a convex setF in an n dimensional space. At stept ∈ [0, T ], our algorithm needs to output a
vectorxt ∈ F , and is then given a cost functionct ∈ R

n. The cost of our algorithm at stept is the dot product
betweenct andxt, that is

∑n

i=1 ct
ix

t
i. The goal of the algorithm is to minimize its total cost over all the steps.

We compare the performance of the algorithm against the single vectorx ∈ F that minimizes
∑

t x · ct.

Note that this is like a typical online learning problem, except that the experts here are all vectorsx in F , so a
regular application of the exponential updates method is infeasible. On the other hand, we can make use of the
fact that the costs or losses of different experts are related to each other through the vectorsct.

Consider the following gradient descent algorithm for thisproblem. (The algorithm should be reminiscent of
the perceptron algorithm discussed in class.)

(i) Start with an arbitrary vectorx0 ∈ F .

(ii) At step t, output the current vectorxt.

(iii) Upon obtaining the cost vectorct, update the current vector as follows:yt = xt − 1√
T

ct;

If yt ∈ F , thenxt+1 = yt, otherwise,xt+1 = argminx∈F |x − yt|.

Here|x − y| for x, y ∈ R
n denotes the Euclidean distance between the two vectors, and|x| denotes|x − 0|

where0 is the all-zeroes vector.

We will bound the performance of this algorithm in terms of the following input parameters: the diameter of the
setF , ∆ = maxx,y∈F |x − y|, and the size of the cost vectors,S = maxt |ct|.

(a) For arbitrary vectorsu ∈ F andv ∈ R
n, suppose thatw = argminx∈F |x−v|. Prove that|u−w| ≤ |u−v|.

(Hint: Use a geometric argument along with the fact that F is convex.)

(b) Letx∗ ∈ F be the optimal solution, that is, the single vector that minimizes
∑

t x ·ct. We will now analyze
the progress over time of our vectorxt towardsx∗. Using part (a), give an upper bound on|xt+1 − x∗|2 in
terms of|xt − x∗|2, the cost of the algorithm at stept, and the cost ofx∗ at stept.
(Hint: Use the fact that for any two vectors a and b, |a + b|2 = |a|2 + 2a · b + |b|2.)

(c) Use part (b) to prove that the algorithm’s total cost is nomore than the total cost ofx∗ plusO(
√

T (∆2 +
S2)).
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