CS 787: Advanced Algorithms Homework 3
Out: 11/14/07 Due: 12/07/07

Guidelines

Same as always.

Exercises

1. Prove that FIFO i&-competitive for caching.

2. In class we proved that Move-To-Front is 2-competitivethe list update problem by claiming that at any step,
the increase in our potential function is no more tBah— p + 1 plus the number of paid exchanges made by
OPT, where is the position of the currently accessed element in oualisly’ is the position of that element in
the optimal list. In class we proved this claim assuming @RT does not move the currently accessed element.
Complete the proof of this claim for the case that OPT doesantioig element to some position aheaghof

3. Recall that the Halving algorithm makes at miogt, |C| mistakes for learning concept clags Suppose that
we wanted a better bound for learning some function€'ibut would settle for a worse mistake bound for
learning other functions id’. Can you modify the Halving algorithm to obtain such a guszafi In particular,
suppose that we have a distributipron functionsf € C. Give a modified version for the Halving algorithm
that makes at modbg 1/ps mistakes over a sequence of examples labeled accordifigstd. (If a function
has a high probability mass under this distribution, we viamhake fewer than average mistakes for learning
that function.) Iff is drawn at random from the distributign and then examples are labeled according to it,
how many mistakes does your algorithm make in expectation?

Problems

1. Recall that in class we proved that randomized 1-bit LRRFH competitive for the caching probler {s the
size of the cache, anll, = >, 1/i.)

(a) Prove that when the number of pagéss k + 1, randomized 1-bit LRU id{;-competitive.
(b) Give an example of a request sequencé:fer 2 and N = 4 where this algorithm isot H; competitive.

2. Recall that in the list update problem, we can swap pairseafhbors for a cost of $1 each (these are called
“paid exchanges”), but when an items accessed, we can also mavep in the list for free. It is tempting to
conjecture that the optimal offline algorithm never needgs® paid exchanges. Give an example of a request
sequence showing that this is false (i.e., in this examplenged to use paid exchanges to be optimal).

Hint: You can do thiswith 4 requeststo a list of 3 elements.

3. Theonline bin-packing problem is a variant of the knapsack problem. We are givenndimited number of
bins, each of sizé. We get a sequence of iems one by one (each of size atinaestd are required to place them
into bins as we receive them. Our goal is to minimize the nurobbins we use, subject to the constraint that
no bin to should be filled to more than its capacity. In thissiioe we will consider a simple online algorithm
for this problem calledrirst-Fit (FF). FF orders the bins arbitrarily, and places each itamtime first bin that
has enough space to hold the item.

(a) Prove that FF has competitive rafio(Extra credit: Prove that its competitive raticris4.)



(b) Give a sequence of item sizes for which the competititie 1af FF is no better thaf/2. Try to get as
large a lower bound on the competitive ratio as you can.

4. Intheonline call admissionproblem, we are given a graph (think of it as a telephony neégvdVe get a request
sequence of calls each of which is a path in the graph. Ouiiddeleither admit any given call, and remove the
used up edges from the graph (they cannot be reused for apgauint calls), or reject the call. Our objective
is to admit as many calls as we can. We will discuss this prolifeine graphs withD edges—these are graphs
with D 4+ 1 nodesvg, vy, - - - ,vp, and an edge betweenandv; ., for every:i € [0, D — 1].

(a) Prove that any deterministic algorithm must have a cditiygeratio of (D) on this graph.

(b) AssumeD = 2F for somek, and consider the following randomized algorithm. Pick aregeri <
[1,k — 1] u.a.r. If a call contains betweeti and2:*! edges, and does not overlap with any previously
admitted call, then admit the call, otherwise reject it. verthat this algorithm has a competitive ratio of
O(k) = O(log D). Hint: What isthe c.r. of thisalgorithmif all calls have between 2¢ and 2¢* edges?

5. Tracking a moving target. Here is a variation on the deterministic Weighted- Majoaltgorithm, designed to
make it more adaptive.

(a) Each expert begins with weigh{as before).
(b) We predict the result of a weighted-majority vote of tlxperts (as before).

(c) If an expert makes a mistake, we penalize it by dividisgueight by2, but only if its weight was at least
1/4 of the average weight of experts.

Prove that in any contiguous block of trials (e.g., the 5ksineple through the 77th example), the number of
mistakes made by the algorithm is at m6Xin + log n), wherem is the number of mistakes made by the best
expert in that block, and is the total number of experts.

6. The “sleeping-experts” problem. Consider a standard experts setting and suppose that anengtep, only
a subset of the experts are available to make a predictiomw@amodify the multiplicative updates algorithm
from class to give a low regret bound in this case? More pedgim this setting, at every time step we get to see
which experts are “awake” to make a prediction. We chooseobtigose experts. Then we get to see the cost
vector for that step. The total cost of expeid the sum of its costs over the steps thaas awake in. Naturally,
if an expert is awake for very few steps, we cannot hope togotioat our total cost over all the steps is not much
larger than the expert’s cost over the steps that it was aimal8o we will aim for a slightly different guarantee.

Let T; denote the set of steps when expentas awake, cogfALG) denote the expected cost of the algorithm
over the stepd;, and cost(i) denote the cost of expeitover the stepd;. Then, our goal is to say that
cost(ALG) < (1 + e)cost (i) + O(L log n), and this should hold for every expért

Consider the following variant of the multiplicative updatmethod for this problem:
(i) Initialize w; o = 1 for all .
(i) Atevery stept, letp;: = w;+/W: be the probability of picking an awake expg&rivherelV; is the sum of
the weights of all the experts awake at that step (and nobtaéweight of all the experts).
(iii) Let ¢;+ denote the cost to experat stept. Update weights for awake experts as follows:

1
Rt = TTe Xj:pj,tcj,t —Cit

Wi g1 = wi (1 + )i

(a) Prove using induction that the total weight of all expat any step is at most (In particular, although
individual weights can go up or down, the total weight neveegup).

(b) Express the weight of experat timeT" in the form of the total expected cost of the algorithm and il
cost of the expert. Use part (a) to prove that g@stG) < (1 + €)cost (i) + O(% logn).



