
CS 787: Advanced Algorithms Homework 3

Out: 11/14/07 Due: 12/07/07

Guidelines

Same as always.

Exercises

1. Prove that FIFO isk-competitive for caching.

2. In class we proved that Move-To-Front is 2-competitive for the list update problem by claiming that at any step,
the increase in our potential function is no more than2p′ − p + 1 plus the number of paid exchanges made by
OPT, wherep is the position of the currently accessed element in our listandp′ is the position of that element in
the optimal list. In class we proved this claim assuming thatOPT does not move the currently accessed element.
Complete the proof of this claim for the case that OPT does move this element to some position ahead ofp′.

3. Recall that the Halving algorithm makes at mostlog2 |C| mistakes for learning concept classC. Suppose that
we wanted a better bound for learning some functions inC but would settle for a worse mistake bound for
learning other functions inC. Can you modify the Halving algorithm to obtain such a guarantee? In particular,
suppose that we have a distributionp on functionsf ∈ C. Give a modified version for the Halving algorithm
that makes at mostlog 1/pf mistakes over a sequence of examples labeled according tof ∈ C. (If a function
has a high probability mass under this distribution, we wantto make fewer than average mistakes for learning
that function.) Iff is drawn at random from the distributionp, and then examples are labeled according to it,
how many mistakes does your algorithm make in expectation?

Problems

1. Recall that in class we proved that randomized 1-bit LRU is2Hk competitive for the caching problem (k is the
size of the cache, andHk =

∑

i≤k 1/i.)

(a) Prove that when the number of pagesN is k + 1, randomized 1-bit LRU isHk-competitive.

(b) Give an example of a request sequence fork = 2 andN = 4 where this algorithm isnot Hk competitive.

2. Recall that in the list update problem, we can swap pairs ofneighbors for a cost of $1 each (these are called
“paid exchanges”), but when an itemx is accessed, we can also movex up in the list for free. It is tempting to
conjecture that the optimal offline algorithm never needs touse paid exchanges. Give an example of a request
sequence showing that this is false (i.e., in this example you need to use paid exchanges to be optimal).

Hint: You can do this with 4 requests to a list of 3 elements.

3. Theonline bin-packing problem is a variant of the knapsack problem. We are given an unlimited number of
bins, each of size1. We get a sequence of iems one by one (each of size at most1), and are required to place them
into bins as we receive them. Our goal is to minimize the number of bins we use, subject to the constraint that
no bin to should be filled to more than its capacity. In this question we will consider a simple online algorithm
for this problem calledFirst-Fit (FF). FF orders the bins arbitrarily, and places each item into the first bin that
has enough space to hold the item.

(a) Prove that FF has competitive ratio2. (Extra credit: Prove that its competitive ratio is7/4.)

1

(b) Give a sequence of item sizes for which the competitive ratio of FF is no better than3/2. Try to get as
large a lower bound on the competitive ratio as you can.

4. In theonline call admissionproblem, we are given a graph (think of it as a telephony network). We get a request
sequence of calls each of which is a path in the graph. Our taskis to either admit any given call, and remove the
used up edges from the graph (they cannot be reused for any subsequent calls), or reject the call. Our objective
is to admit as many calls as we can. We will discuss this problem in line graphs withD edges—these are graphs
with D + 1 nodesv0, v1, · · · , vD, and an edge betweenvi andvi+1 for everyi ∈ [0, D − 1].

(a) Prove that any deterministic algorithm must have a competitive ratio ofΩ(D) on this graph.

(b) AssumeD = 2k for somek, and consider the following randomized algorithm. Pick an integeri ∈
[1, k − 1] u.a.r. If a call contains between2i and2i+1 edges, and does not overlap with any previously
admitted call, then admit the call, otherwise reject it. Prove that this algorithm has a competitive ratio of
O(k) = O(log D). Hint: What is the c.r. of this algorithm if all calls have between 2i and 2i+1 edges?

5. Tracking a moving target. Here is a variation on the deterministic Weighted- Majorityalgorithm, designed to
make it more adaptive.

(a) Each expert begins with weight1 (as before).

(b) We predict the result of a weighted-majority vote of the experts (as before).

(c) If an expert makes a mistake, we penalize it by dividing its weight by2, but only if its weight was at least
1/4 of the average weight of experts.

Prove that in any contiguous block of trials (e.g., the 51st example through the 77th example), the number of
mistakes made by the algorithm is at mostO(m + log n), wherem is the number of mistakes made by the best
expert in that block, andn is the total number of experts.

6. The “sleeping-experts” problem. Consider a standard experts setting and suppose that at any time step, only
a subset of the experts are available to make a prediction. Can we modify the multiplicative updates algorithm
from class to give a low regret bound in this case? More precisely, in this setting, at every time step we get to see
which experts are “awake” to make a prediction. We choose oneof those experts. Then we get to see the cost
vector for that step. The total cost of experti is the sum of its costs over the steps thati was awake in. Naturally,
if an expert is awake for very few steps, we cannot hope to prove that our total cost over all the steps is not much
larger than the expert’s cost over the steps that it was awakein. So we will aim for a slightly different guarantee.

Let Ti denote the set of steps when experti was awake, costi(ALG) denote the expected cost of the algorithm
over the stepsTi, and costi(i) denote the cost of experti over the stepsTi. Then, our goal is to say that
costi(ALG) ≤ (1 + ε)costi(i) + O(1

ε
log n), and this should hold for every experti.

Consider the following variant of the multiplicative updates method for this problem:

(i) Initialize wi,0 = 1 for all i.

(ii) At every stept, let pi,t = wi,t/Wt be the probability of picking an awake experti, whereWt is the sum of
the weights of all the experts awake at that step (and not the total weight of all the experts).

(iii) Let ci,t denote the cost to experti at stept. Update weights for awake experts as follows:

Ri,t =
1

1 + ε





∑

j

pj,tcj,t



 − ci,t

wi,t+1 = wi,t(1 + ε)Ri,t

(a) Prove using induction that the total weight of all experts at any step is at mostn. (In particular, although
individual weights can go up or down, the total weight never goes up).

(b) Express the weight of experti at timeT in the form of the total expected cost of the algorithm and thetotal
cost of the expert. Use part (a) to prove that costi(ALG) ≤ (1 + ε)costi(i) + O(1

ε
log n).

2

