CS787: Advanced Algorithms

Scribe: Blayne Field, Dan Rosendorf Lecturer: Shuchi Chawla
Topic: Network Flows Date: Sept. 12 2007

In this lecture, we discussed the problem of maximum networks flows, which is a general problem
to which many other problems can be reduced.

4.1 Problem Definition

Given: A graph G = (V,E), which can be either directed or undirected, a capacity function
c: E s T, along with a source s and a sink ¢. This can be thought of as a set of pipes, with the
capacities being analogous to the cross-section of the pipe. The water is inserted into the network at
the source s and ends up at the sink ¢t. Our goal will be to find out what the maximum throughput
of our network can be. Where by throughput in our analogy we mean the maximum amount of
water per unit of time that can flow from s to t.

Let us now explain more precisely what we mean by our notation. In our problem we obviously need
not consider loops in the graph (i.e. edges from v to v) since they add nothing to the throughput
abilities of the system and we can also WLOG assume there are no multiple edges since if eq, e
are two edges from u to v with capacities c¢1, co then we can represent them by one edge e with
capacity c; + ca.

This means that if we have a directed graph we can consider it to be in the form of some set V' and
a set E such that E C V x V. For an undirected graph we shall consider E to be a subset of [V]?
(the two element subsets of V) by abuse of notation we shall still write (u,v) for an edge instead
of the more correct {u,v}. Very soon we will see that we can actually restrict ourselves to only the
case of the directed graph but first let us give a definition.

Definition 4.1.1 Let G = (V, E) be a directed or undirected graph, ¢ be a capacity function on G
and f:V x Vi RT. We say that f is a flow if the following holds:

YVoeV(w#sANv#t) — (Z fu,v) = Zf(v,u))
ueV ueV

In words for all nodes that are not the sink or source the amount of incoming flow is equal to the
amount of outgoing flow, (i.e. there are no points of acummulation of flow) this is usually called
the conservation property.

We say that a flow is feasible for G (or just feasible if the graph and capacity function in question
are obvious) if

Vu,v € V ((u,v) € E) = (f(u,v) < c((u,v))) A ((w,0) & E) — (f(u,v) = 0)

In words the flow along any valid edge is smaller then that edge’s capacity.

We define the size of a flow f denoted |f| to be [f| =D, cv f(5,u) =D e f(u,s) or all outgoing

flow from s.

Goal: The goal is to find a feasible flow with maximum size.

Let us now notice a few things so we can from now on only consider directed graphs. Suppose
we have an undirected graph G = (V, E) with a capacity function ¢. We then define G’ to be
the directed graph with vertices V' and edges E' = {(u,v);{u,v} € E}. In other words for each
edge in our original graph we put in two edges going each way. We define ¢ : E' — RT by
d((u,v)) = ¢({u,v}), which just means we set each of our two edges we created to have the same
capacity as the one original edge.

Now we claim that the maximum flow in our new oriented graph has the same size as the maximum
flow in our original graph and that it is easy to get the flow in the original graph from the flow in
the new graph.

Lemma 4.1.2 Let G = (V, E) be an undirected graph and define G' as above. Let f1 be a feasible
flow in G and f2 be a feasible flow in G’ then there exist feasible flows f1 in G’ and f5 in G such

that | f1| = | fi| and |fo| = |f5].

Proof: For f; define f] to just be fi. Then obviously the conservation properties still hold and
since we made both directions of our new edge have the capacity of the original edge f; is still
feasible. Since we have not changed anything |f1| = |f]]|.

On the other hand for fy define f(u,v) = max{0, fa(u,v) — fo(v,u)} then th conservation property
is still satisfied as one easilly check. Feasibility is satisfied thanks to the fact that f, is nonneg-
ative and thus |fa(u,v) — fa(v,u)| is at most ¢((u,v)). The equality of size can be checked in a
straightforward manner. [|

Definition 4.1.3 An s,t cut is a set of edges C such that the graph G' = (V, E \ C) contains no
s,t path. The capacity of the cut is cap(C) =) . c(e)

Note that an s,t cut defines a partition on the set of edges V into (S, S), such that s € S and t € S
Lemma 4.1.4 If we take F to be the set of all feasible flows, then for any s,t cut C, cap(C) >
mazsep|f].

Proof: Since C' is a cut, any s,t path must contain at least one edge in C, thus any flow must have

value less than cap(C).

Corollary 4.1.5 Let C* be a minimum s,t cut of G and f* be a maz flow of G, then cap(C*) >
1F-
Using this corollary, we see that if we can exhibit a min-cut that equals the value of our flow, it

serves as a certificate of the optimality of our flow. This is illustrated in our earlier example by the
the cut below, which has a capacity of 6, the same as the value of our flow (see Figure 4.2.2).

4.2 Ford-Fulkerson Algorithm

Since greedy approaches often lead to an optimal solution, it seems natural to start trying to solve
this problem with such an approach. We know that if we can find an s,¢ path with some positive
capacity, we can increase the flow along that edge while maintaining feasability. This leads us to
the following greedy approach:

e Find an s,¢ path with some remaining (positive) capacity.
e Saturate the path

e Repeat until no such paths exist

Unfortunately, this approach does not give us an optimal flow. As illustrated below in Figure 4.2.1,
where the numbers in parantheses are the capacities and the other ones are the size of the flow) we
chose the path through the middle and saturated it with 3 units of flow. This is a reasonable path
to choose, since it has the maximum capacity of all s,t paths. However, this leaves us with one
remaining s,t path which has a capacity of 1. Saturating this path will result in the termination
of the algorithm, giving a flow of value 4. However, as we saw before, the maximum value of this
network is 6. Thus we need to improve on this approach. We do this by using the "residual graph”
of G, in what is known as the Ford-Fulkerson algorithm.

S

Figure 4.2.1: 3-3-3 flow Figure 4.2.2: Cut with flow

4.2.1 Ford-Fulkerson Algorithm

The general idea of the Ford-Fulkerson algorithm is to choose an s — t path through our graph
saturate it, and create a new residual graph which has possibly different edges representing the
flow and thus allowing us to sort of go back on our original flow if it is not maximal. We iterate
this process until there is no s — ¢ path in our residual graph.

First let us define the residual graph for a graph with a given flow.

Definition 4.2.1 Let G = (V, E) be an directed graph with a capacity function c. Let f be a feasible
flow in this graph. Then we define the residual graph, Gy = (V¢, Ef) and ¢y in the following manner.

Vi =V and Ef = {(u,v)|u,v € VA (c(u,v) > f(u,v))} U{(w,v)|u,v € VA (f(v,u) > 0)}. We
define c¢(u,v) = c(u,v) — f(u,v) + f(v,u).

This means that for every edge in our original graph if it is saturated we remove it and we either
add a new edge in the oposite direction with capacity equal to that of the flow or if there exists an
edge in that direction we increase it’s capacity by the amount of the flow. For a non saturated edge
we decrease it’s capacity by the amount of the flow and add the capacity of the flow to the edge
going in the other direction. Figures 4.2.3 and 4.2.4 show a graph with a flow and it’s corresponding
residual graph.

Figure 4.2.3: A graph with a feasible flow Figure 4.2.4: Residual graph of the flow in the
previous figure

We also define the addition of two flows in the obvious fashion.

Definition 4.2.2 Let f : V XV — R" and f' : V x V +— RY then we define g = f + f' in the
following manner. g(u,v) = max{0, f(u,v) — f(v,u) + f'(u,v) — f'(v,u)}. It is obvious that the
conservation property holds for g.

Let us now proceed to the Ford-Fulkerson algorithm.
1. Start with f: V x V +— {0} and G = (V, E)) an directed graph and a capacity function c.

2. Create Gy and cy.

3. Find a simple s — ¢ path P in Gy and let ¢’ be the minimum capacity along this path define
let f’ be the flow of capacity ¢’ along P and 0 everywhere else. Let f = f + f’.

4. if no s,t path is found terminate.

5. Repeat

The paths chosen in step 3 are called "augmenting paths”.

Theorem 4.2.3 The Ford-Fulkerson algorithm described above finds the mazimum flow if the ca-
pacities are integers.

Proof: First note that at each step of the algorithm |f| increases by at least a unit thus the
algorithm must terminate in a finite number of steps, since we have only a finite amount of capacity
leaving the source.

Next we note that the flow created at every step is actually a feasible flow in the graph G. We
show this by induction. It is obvious for the empty flow. Let f; is our flow at stage ¢ which is
feasible by hypothesis and suppose P is our s,? path and cy, p is the minimum capacity along that
path. Suppose (u,v) is any edge on the path P (obviously for edges outside the path feasibility is
no problem).

We have cy,(u,v) = c(u,v) — fi(u,v) + fi(v,u). By the definition of the addition of flows we can
see that any flow that is a sum of two flows has the property that if f(u,v) > 0 then f(v,u) = 0.
If fi(u,v) > 0 then we have 0 < cy,(u,v) = c(u,v) — fi(u,v) from feasibility of f; and since
ct.p < ¢y, (u,v) we get by simple algebra fiy1 < c(u,v). If we have f;(v,u) > 0 then 0 < ¢y, (u,v) =
c(u,v) + fi(v,u) and fiy1(u,v) is by definition either 0, or fi11(u,v) = ¢y, p — fi(v,u) which then
by simple algebra yields fi+1(u,v) < c(u,v).

To show that our resulting flow is a maximal flow first notice that S = {v;v € V A
(exists an s,v path in G¢)} along with it’s complement gives us an s,t cut C' in G using the
second definition. Otherwise we would have an s,t path in G; which is a contradiction with the
fact that the algorithm terminated. Next we wish to claim that the capacity of this cut is exactly
equal to the size of our resulting flow f,..

By the definition of S we must have for any (u,v) € C, f.(u,v) = c(u,v) since otherwise cy, (u,v) > 0
and thus we can get from s to v via some path. We also have for any (u,v) € F where v € S and
u & S that f,(u,v) = 0 since otherwise cy, (v,u) = c(v,u) + f,(u,v) > 0 (since we know that only
one of f.(u,v), fr(v,u) is non zero). Now this means that we have that the total flow exiting S is
the capacity of C'. Now

SIS fwo) = Y o) = 3 fils0)
u€eS veV veV veV

this follows from the fact that conservation holds for all u € S other then s, but since f,.(v,u) =0
for uw € S and v € S the second sum degenerates into

Z fr(v,u)

vES

DO frluww) = folv,w)

ueS vev veES

giving us

and by regrouping we get Zues(zyes fr(u,v)) which is exactly the total flow out of S. So we see
that |f] is actually equal to the capacity of C. [

Corollary 4.2.4 Max-flow Min-cut theorem.
The size of the mazimum flow is exactly equal to the capacity of the minimum cut.

Before we move on let us notice that even though we only proved that the Ford-Fulkerson algorithm
works with integer capacities, it is easy to see that if we have rational capacities we can just change
them by multiplying all of them by their smallest common denominator, and a maximum flow in
such a graph will easily yield a maximum flow in our original graph.

Now let us turn to examining the running time of our algorithm. Every step in an iteration takes
at most O(m) time where m is the number of edges. An easy bound on the number of iterations
could be for example F' = |f,| the size of the maximal flow since in each iteration we increase the
size of our flow by at least one. This gives us a bound of O(mF'). Now if we set C' = max.crc(e)
we get a bound of O(m?C) or better yet if A, is the number of edges exiting s we get O(mAgc).
This runing time is still only pseudo polynomial in our input though since we input the capacities
as binary numbers and as such the size of the input is actually logs(c).

The following example illustrates that if we get an unfortunate graph and choose our s,t paths in
a bad fashion this worst case time could actually be reached. If we take the graph in Figure 4.2.5
and choose our paths to always include the middle edge of size 1 we actually have to iterate 20!
times.

(27100) (27100)

(27100)
(27100)

Figure 4.2.5: Bad runtime graph

To handle this situation we can modify our algorithm in the following way. Let us define G? to
be the graph to be Gy without edges of capacity less then A. Then start by setting A to be half
the maximum capacity in the graph. Let the Ford-Fulkerson algorithm run on G? and after it’s
termination let A = A/2 and repeat until A = 1. We can see that in each stage we will make at
most 2m repetitions since each iteration increases flow by at least A and we have the total outgoing

capacity from s at most degree of s times A * 2 since all capacities in our graph are at most A x 2.
There will be at most log,(c) + 1 repetitions where ¢ is the maximum capacity in our graph and
we get a bound of O(m?log(c)).

It actually turns out that if we run the Ford-Fulkerson algorithm making sure to choose the least
path in every iteration we can get a bound of O(m?n), but we shall not show that here.

