CS787: Advanced Algorithms

Scribe: Yudong Tang and Baris Aydinlioglu Lecturer: Shuchi Chawla
Topic: Randomized Algorithms Date: September 17, 2007

In this lecture and the next we cover randomized algorithms. Today we begin by motivating the
use of randomized algorithms. Next we recall some related definitions and results from probability
theory. We end today’s lecture with studying Karger’s randomized algorithm for computing a
min-cut of a graph.

6.1 Introduction

We define a randomized algorithm as an algorithm that can toss coins and act depending on the
outcome of those tosses. There are two kinds of randomized algorithms that we will be studying:

e Las Vegas Algorithms: These refer to the randomized algorithms that always come up with
a/the correct answer. Their “expected” running time is polynomial in the size of their input,
which means that the average running time over all possible coin tosses is polynomial. In
the worst case, however, a Las Vegas algorithm may take exponentially long. One example
of a Las Vegas algorithm is Quicksort: it makes some of its decisions based on coin-tosses,
it always produces the correct result, and its expected running and worst-case running times
are nlogn and n?, respectively.

e Monte Carlo Algorithms: These refer to the randomized algorithms that sometimes come
up with an incorrect answer. Like Las Vegas algorithms their expected running time is
polynomial but may be exponential.

By performing independent runs of a Monte Carlo algorithm, we can decrease the chances of
obtaining an incorrect result to a value as small as we like. For example, if a particular Monte
Carlo algorithm produces an incorrect result with probability 1/4, and we have the ability
to detect an incorrect result, then the probability of not obtaining a correct answer after ¢
independent runs is (1/4)!. In some contexts, such as in optimization problems, we do not
have the ability to detect an incorrect answer, but can compare different answers and pick
the best one. The same analysis would also apply in these cases, because if picking the best
answer does not give the optimal answer, then it means the algorithm produced an incorrect
answer in all of its independent runs.

Sometimes we may not have an algorithm with an error probability of a small constant, but
we may have one with error probability a function of the input size. In such a case, we aim
for an error probability from which we can obtain desired low values with a small number
(i.e., polynomial in the size of the input) of independent runs.

6.2 Motivation

Randomized algorithms have several advantages over deterministic ones. We discuss them here:

e Randomized algorithms tend to bring simplicity. For example, recall from Lecture 2 the
problem of finding the kth smallest element in an unordered list, which had a rather involved
deterministic algorithm. In contrast, the strategy of picking a random element to partition
the problem into subproblems and recursing on one of the partitions is much simpler.

e Another advantage randomized algorithms can sometimes provide is runtime efficiency.
Indeed, there are problems for which the best known deterministic algorithms run in ex-
ponential time. A current example is Polynomial Identity Testing, where given a n-variate
polynomial f of degree d over a field F, the goal is to determine whether it is identically zero.
If f were univariate then merely evaluating f at d + 1 points in F would give us a correct
algorithm, as f could not have more that d roots in F. With n variables, however, there may
be n? roots, and just picking n? 4+ 1 points in F gives us exponential time. While we don’t
know of a deterministic polytime algorithm for this problem, there is a simple algorithm that
evaluates f at only 2d points, based on a theorem by Zippel and Schwarz.

A prevalent example where randomization helps with runtime efficiency used to be Primality
testing, where given an n-bit number, the goal is to determine if it is prime. While straightfor-
ward randomized algorithms for this problem existed since the 70’s, which ran in polynomial
time and erred only if the number was prime, it was not known until two years ago whether
a deterministic polytime algorithm was possible—in fact, this problem was being viewed as
evidence that the class of polytime randomized algorithms with one-sided error is more pow-
erful than the class of polytime deterministic algorithms (the so called RP vs P question).
With the discovery of a polytime algorithm for Primality, however, the question still remains
open and can go either way.

e There are problems in which randomized algorithms help us where deterministic algorithms
can provably not work. A common feature of such problems is lack of information. A
classical example involves two parties, named A (for Alice) and B (for Bob), each in possession
of an n bit number (say = and y resp.) that the other does not know, and each can exchange
information with the other through an expensive communication channel. The goal is to find
out whether they have the same number while incurring minimal communication cost. Note
that the measure of efficiency here is the number of bits exchanged, and not the running
time. It can be shown that a deterministic protocol has to exchange n bits in order to achieve
guaranteed correctness. On the other hand, the following randomized protocol, based on the
idea of fingerprinting, works correctly with almost certainty: A picks a prime p in the range
[2n, 4n] at random, computes mod p, and sends both z and p to B, to which B responds
with 1 or 0 indicating whether there was a match. With only O(logn) bits exchanged, the
probability of error in this protocol-i.e., Pr[z # y and x mod p = y mod p|]- can be shown
to be at most 1/n. By repeating the protocol, we can reduce the probability of an error to
less than that of an asteroid colliding with either of A or B’s residences, which should be a
practically sufficient threshold.

We now list several more examples of tasks where randomization is useful:

Load Balancing: In this problem there are m machines and incoming jobs, and the goal is to
assign the jobs to the machines such that the machines are equally utilized. One simple way that

turns out very effective here is to simply pick at random, given a job, one of the m machines and
assign the job to it. We will study load balancing in a later lecture.

Symmetry Breaking: Randomization comes handy also in designing contention resolution mech-
anisms for distributed protocols, where a common channel is shared among the communicating
entities of a network. The Ethernet protocol is a typical example, where a node that has something
to send instantly attempts to send it. If two or more nodes happen to be sending at overlapping
windows then they all abort, each pick at random a back-off duration, and reattempt after its
picked time elapses. This turns out to be a very effective mechanism with good performance and
without any prior communication between sending nodes.

Sampling: Another scenario where a randomized approach works really well is when we want to
compute the integral of a multivariate function over a region. Similar to the polynomial identity
testing example above, in the case of a univariate polynomial this problem can be solved rather
easily, by piecewise linear approximations. But the same method does not work well in the general
case as there are exponentially many pieces to compute. The only known efficient method for
solving this problem uses randomization, and works as follows. It computes a bounding box for
the function, samples points from the box, and determines what portion of the points sampled lies
below the function, from which an approximate value for the integral is then computed. We may
get to this problem later in the course.

The sampling method applies generally to a number of problems that involve counting. For example,
the problem of finding the number of satisfying assignments of a boolean formula involving n
variables, which is NP-hard as we will see a later lecture, can be reasonably approximated by
sampling points from {0, 1}".

Searching for witnesses: A recurring theme among the above examples is the task of searching for
witnesses for verifying whether a certain property holds. Randomization yields effective techniques
in these cases if the density of witnesses are high. For example, in Polynomial Identity Testing, it
can be shown through algebra that if a polynomial is not identically zero, then the points where it
evaluates to non-zero has high density relative to all points where it is defined.

The reader should be convinced by now that flipping coins is a powerful tool in algorithm design.
6.3 Elementary Probability Theory

In the following, let X; be random variables with x; their possible values, and let &; be events.

We have the following definitions for a random variable X:
e Expectation: E[X] = u(X) =) o Pr[X = z|.
e Variance: Var (X) = E[(X — E[X])?] = E[X?] — E[X]?

e Standard Deviation: o(X) = y/Var(X)

We have the following rules:

e Linearity of Expectation: E[Y", a; - X;] = a;- >, E[X;], where o’s are scalars and no indepen-
dence assumptions are made on X;’s. It follows from this rule that the above two definitions
of variance are identical.

e Multiplication Rule: E[X; - Xo] = E[X}] - E[X] if X}, X2 are independent.
e Bayes’ Rule: If & are disjoint events and Pr[{J; &) = 1, then E[X] =Y. E[X|&] - Pr(&;].
e Union Bound: Pr{J; &) < >, Pr(&].

e Markov’s Inequality: If X > 0 with probability 1, then Pr[X > a] < EX]
We only give a proof of the last statement:
Proof: This is a proof of Markov’s inequality.
E[X] = EX|0<X <qa]-Pr[0 <X <a]+E[X|a< X]-Prla < X] (6.3.1)
> E[X|a < X]-Prla < X] (6.3.2)
> a-Prla < X] (6.3.3)

6.4 Global Min Cut

6.4.1 Description of the problem

Let G = (V, E) be a graph. For simplicity, we assume G is undirected. Also assume the capacity
of each edge is 1, i.e., C. = 1,Ve € E. A cut is a partition (S,S) of V such that S # 0,V. We
define the capacity of (S, S) to be the sum of the capacities of the edges between S and S. Since
C. = 1,Ve € E, it is clear that the capacity of (S,5) is equal to the number of edges from S to S,
|E(S,S)| =1|(Sx S)NE]|.

Goal: Find a cut of globally minimal capacity in the above setup.
6.4.2 Deterministic method

This problem can be solved by running max-flow computation (Ford-Fulkerson algorithm) n — 1
times, n = |V|. One fixes a node s to be the source, and let the sink run through all other nodes.
In each case, calculate the min cut using the Ford-Fulkerson algorithm, and compare these min
cuts. The minimum of the n — 1 min cuts will be the global min cut.

To see the above statement, consider the following: Let (S, S) be the global min cut. For the node
s we fixed, either s € S or s € S. If s € S, then pick a node ¢ in S as the sink. The max-flow
computation with s as source and t as sink gives a flow f. f must be no greater than the capacity
of (S, 8) since f has to flow from S to S. So the min cut when s is source and ¢ is sink must be no

greater than (S, S). Therefore, when ¢ € S is chosen as sink, the min cut has the same capacity as
the global min cut. In the case s € S, notice that G is undirected, so flow can be reversed and it
goes back to the first case.

6.4.3 Karger’s algorithm: a randomized method

Description of the algorithm:

1. Set S(v) = {v},Vv e V.
2. If G has only two nodes vy, va, output cut (S(v1), S(v2)).

3. Otherwise, pick a random edge (u,v) € E, merge u and v into a single node uv, and set
S(uv) = S(u) U S(v). Remove any self-loops from G.

-

Theorem 6.4.1 Karger’s algorithm returns a global min cut with probability p >

—~
N3

7
Proof: Let (S,S) be a global min cut of G, and k be the capacity of (S,S). Let £ be the event
that the Karger’s algorithm produces the cut (5, 5).

First, we show that £ occurs if and only if the algorithm never picks up any edge from S to S. The
“only if” part is clear, so we show the “if” part: Assume the algorithm doesn’t pick up any edge of
cut (S, S). Let e be the first edge of cut (9, .5) which is eliminated by the algorithm, if there is any.
The algorithm can only eliminate edges in two ways: Pick it up or remove it as a self loop. Since
e can’t be picked up by assumption, it must be eliminated as a self-loop. e becomes a self-loop if
and only if its two end points u, v are merged, which means an edge €’ connects u,v is selected in
some iteration. In that iteration, u,v may be the combination of many nodes in original graph G,
ie, u = ujug...u;, v = v1v2...v;, but since none of the previous picked up edges is in cut (5, S), the
nodes merged together must belong to the same set of S or S. So if e connects S to S, the ¢’ will
also connects S to S, which contradicts to the assumption that the algorithm doesn’t pick up edges

of cut (9,9).

Second, notice that (S, S) remains to be global min cut in the updated graph G as long as no edge
of (S, S) has been picked up. This is because any cut of the updated graph is also a cut in the orig-
inal graph and the edges removed are only internal edges, which don’t affect the capacity of the cut.

Now let & be the event that the algorithm doesn’t pick any edge of (S, S) in i-th iteration. Then,
PI‘[S] = Pr[c‘fl] . PI‘[€2|81] . Pr[€3\€1 N 52] (644)

Observe that, in the i-th iteration, assuming (), j<i—1 &; has occurred, every node has at least k£
edges. For otherwise the node with fewer than k£ edges and the rest of the graph would form a
partition with capacity less than k. It follows that there are at least (n — i + 1)k/2 edges in i-th

iteration if no edge of (S, 5) has been selected. Therefore,

k n—it—1
Pri&l () &| = 1- , = : (6.4.5)
I<j<io m—i+1k/2 n—i+1
n—2n-3 21 2
P em = ———— 4.
rlé] n n—1 43 n(n-1) (6.4.6)
|

To decrease the chances of Karger’s algorithm returning a non-minimal cut, as mentioned earlier
in the lecture we can perform independent runs of the algorithm and take the smallest of the cuts
produced. Then if anyone of the runs produces a min-cut, we get a correct solution. If the algorithm
is independently run ¢ times, then the probability that none of the runs result in the min-cut would
be

9 t
Pr[Karger’s algorithm is wrong in one run]’ < <1 - (1)> (6.4.7)
n(n —

t
In particular, if ¢t = k@, then roughly, (1 - ﬁ) <e k.

One interesting implication of Karger’s algorithm is the following.

Theorem 6.4.2 There are at most (g) global min-cuts in any graph G.

Proof: For each global min-cut, the algorithm has probability at least ﬁ to produce that
min-cut. Let C;,1 < i < m be all the global min-cuts. Run the algorithm once and obtain the cut
C. The probability that C' is a global min-cut is

2

Pr[C is global min cut] = Zi:Pr[C =Cy] > mm (6.4.8)
. e : (n—1
Now since probability is always no greater than 1, we obtain m < %)]

